Maximal essential extensions in the context of frames

被引:0
作者
Richard N. Ball
Aleš Pultr
机构
[1] University of Denver,Department of Mathematics
[2] Charles University,Department of Applied Mathematics and CE
来源
Algebra universalis | 2018年 / 79卷
关键词
Frame; Sublocale; Essential extension; 06D22; 54A05; 18A22;
D O I
暂无
中图分类号
学科分类号
摘要
We show that every frame can be essentially embedded in a Boolean frame, and that this embedding is the maximal essential extension of the frame in the sense that it factors uniquely through any other essential extension. This extension can be realized as the embedding L→N(L)→BN(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L \rightarrow \mathcal {N}(L) \rightarrow \mathcal {B}\mathcal {N}(L)$$\end{document}, where L→N(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L \rightarrow \mathcal {N}(L)$$\end{document} is the familiar embedding of L into its congruence frame N(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}(L)$$\end{document}, and N(L)→BN(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}(L) \rightarrow \mathcal {B}\mathcal {N}(L)$$\end{document} is the Booleanization of N(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}(L)$$\end{document}. Finally, we show that for subfit frames the extension can also be realized as the embedding L→Sc(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L \rightarrow {{\mathrm{S}}}_\mathfrak {c}(L)$$\end{document} of L into its complete Boolean algebra Sc(L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathrm{S}}}_\mathfrak {c}(L)$$\end{document} of sublocales which are joins of closed sublocales.
引用
收藏
相关论文
共 21 条
  • [1] Aull CE(1963)Separation axioms between Indag. Math. 24 26-37
  • [2] Thron WJ(1968) and J. Reine Angew. Math. 232 102-109
  • [3] Banaschewski B(2013)Injective hulls in the category of distributive lattices J. Pure Appl. Algebra 217 915-926
  • [4] Bruns G(2013)Essential completeness of archimedean Appl. Categ. Structures 21 167-180
  • [5] Banaschewski B(1993)-groups with weak order unit Appl. Categ. Struct. 1 181-190
  • [6] Hager A(1967)Essential completeness in categories of completely regular frames Pac. J. Math. 21 405-420
  • [7] Banaschewski B(1984)Variants of openness Algebra Universalis 18 134-174
  • [8] Hager A(2016)Projective and injective distributive lattices Port. Math. 73 139-152
  • [9] Banaschewski B(1958)Distributive Cauchy lattices Ill. J. Math. 2 482-489
  • [10] Pultr A(1972)On an aspect of scatteredness in the point-free setting Math. Scand. 31 5-32