Inequalities for Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Norms that Sharpen the Triangle Inequality and Complement Hanner’s Inequality

被引:0
作者
Eric A. Carlen
Rupert L. Frank
Paata Ivanisvili
Elliott H. Lieb
机构
[1] Rutgers University,Department of Mathematics, Hill Center
[2] Ludwig-Maximilans Universität München,Mathematisches Institut
[3] Caltech,Mathematics 253
[4] University of California,37
[5] Princeton University,Department of Mathematics
关键词
space; Minkowski’s inequality; Convexity;
D O I
10.1007/s12220-020-00425-y
中图分类号
学科分类号
摘要
In 2006 Carbery raised a question about an improvement on the naïve norm inequality ‖f+g‖pp≤2p-1(‖f‖pp+‖g‖pp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert f+g\Vert _p^p \le 2^{p-1}(\Vert f\Vert _p^p + \Vert g\Vert _p^p)$$\end{document} for two functions f and g in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} of any measure space. When f=g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=g$$\end{document} this is an equality, but when the supports of f and g are disjoint the factor 2p-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{p-1}$$\end{document} is not needed. Carbery’s question concerns a proposed interpolation between the two situations for p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document} with the interpolation parameter measuring the overlap being ‖fg‖p/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert fg\Vert _{p/2}$$\end{document}. Carbery proved that his proposed inequality holds in a special case. Here, we prove the inequality for all functions and, in fact, we prove an inequality of this type that is stronger than the one Carbery proposed. Moreover, our stronger inequalities are valid for all real p≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ne 0$$\end{document}.
引用
收藏
页码:4051 / 4073
页数:22
相关论文
共 12 条
[1]  
Clarkson JA(1936)Uniformly convex spaces Trans. Am. Math. Soc. 40 396-414
[2]  
Ball K(1994)Sharp uniform convexity and smoothness inequalities for trace norms Invent. Math. 115 463-482
[3]  
Carlen EA(2009)Almost orthogonality in the Schatten-von Neumann classes J. Oper. Theory 62 151-158
[4]  
Lieb EH(2014)Stability estimates for the lowest eigenvalue of a Schrödinger operator Geom. Funct. Anal. 24 63-84
[5]  
Carbery A(2020)Inequalities that sharpen the triangle inequality for sums of Ark. Math. 58 57-69
[6]  
Carlen EA(1956) functions in Ark. Math. 3 239-244
[7]  
Frank RL(undefined)On the uniform convexity of undefined undefined undefined-undefined
[8]  
Lieb EH(undefined) and undefined undefined undefined-undefined
[9]  
Carlen EA(undefined)undefined undefined undefined undefined-undefined
[10]  
Frank RL(undefined)undefined undefined undefined undefined-undefined