CR-I-TASSER: assemble protein structures from cryo-EM density maps using deep convolutional neural networks

被引:38
作者
Zhang, Xi [1 ]
Zhang, Biao [1 ]
Freddolino, Peter L. [1 ,2 ]
Zhang, Yang [1 ,2 ]
机构
[1] Univ Michigan, Med Sch, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biol Chem, Med Sch, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
REFINEMENT;
D O I
10.1038/s41592-021-01389-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cryo-electron microscopy (cryo-EM) has become a leading approach for protein structure determination, but it remains challenging to accurately model atomic structures with cryo-EM density maps. We propose a hybrid method, CR-I-TASSER (cryo-EM iterative threading assembly refinement), which integrates deep neural-network learning with I-TASSER assembly simulations for automated cryo-EM structure determination. The method is benchmarked on 778 proteins with simulated and experimental density maps, where CR-I-TASSER constructs models with a correct fold (template modeling (TM) score >0.5) for 643 targets that is 64% higher than the best of some other de novo and refinement-based approaches on high-resolution data samples. Detailed data analyses showed that the main advantage of CR-I-TASSER lies in the deep learning-based C alpha position prediction, which significantly improves the threading template quality and therefore boosts the accuracy of final models through optimized fragment assembly simulations. These results demonstrate a new avenue to determine cryo-EM protein structures with high accuracy and robustness covering various target types and density map resolutions. CR-I-TASSER integrates deep neural-network learning with I-TASSER assembly simulations for automated cryo-EM structure determination.
引用
收藏
页码:195 / +
页数:15
相关论文
共 37 条
[1]   Real-space refinement in PHENIX for cryo-EM and crystallography [J].
Afonine, Pavel V. ;
Poon, Billy K. ;
Read, Randy J. ;
Sobolev, Oleg V. ;
Terwilliger, Thomas C. ;
Urzhumtsev, Alexandre ;
Adams, Paul D. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2018, 74 :531-544
[2]  
Chayen NE, 2008, NAT METHODS, V5, P147, DOI [10.1038/nmeth.f.203, 10.1038/NMETH.F.203]
[3]   MolProbity: all-atom structure validation for macromolecular crystallography [J].
Chen, Vincent B. ;
Arendall, W. Bryan, III ;
Headd, Jeffrey J. ;
Keedy, Daniel A. ;
Immormino, Robert M. ;
Kapral, Gary J. ;
Murray, Laura W. ;
Richardson, Jane S. ;
Richardson, David C. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :12-21
[4]   Single-Particle Cryo-EM at Crystallographic Resolution [J].
Cheng, Yifan .
CELL, 2015, 161 (03) :450-457
[5]   Xmipp 3.0: An improved software suite for image processing in electron microscopy [J].
de la Rosa-Trevin, J. M. ;
Oton, J. ;
Marabini, R. ;
Zaldivar, A. ;
Vargas, J. ;
Carazo, J. M. ;
Sorzano, C. O. S. .
JOURNAL OF STRUCTURAL BIOLOGY, 2013, 184 (02) :321-328
[6]  
Drenth Jan, 2007, P1, DOI 10.1007/0-387-33746-6_1
[7]  
Frenz B, 2017, NAT METHODS, V14, P797, DOI [10.1038/NMETH.4340, 10.1038/nmeth.4340]
[8]   How good can cryo-EM become? [J].
Glaeser, Robert M. .
NATURE METHODS, 2016, 13 (01) :28-32
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   3-DIMENSIONAL MODEL OF PURPLE MEMBRANE OBTAINED BY ELECTRON-MICROSCOPY [J].
HENDERSON, R ;
UNWIN, PNT .
NATURE, 1975, 257 (5521) :28-32