CR-I-TASSER: assemble protein structures from cryo-EM density maps using deep convolutional neural networks

被引:33
作者
Zhang, Xi [1 ]
Zhang, Biao [1 ]
Freddolino, Peter L. [1 ,2 ]
Zhang, Yang [1 ,2 ]
机构
[1] Univ Michigan, Med Sch, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biol Chem, Med Sch, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
REFINEMENT;
D O I
10.1038/s41592-021-01389-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cryo-electron microscopy (cryo-EM) has become a leading approach for protein structure determination, but it remains challenging to accurately model atomic structures with cryo-EM density maps. We propose a hybrid method, CR-I-TASSER (cryo-EM iterative threading assembly refinement), which integrates deep neural-network learning with I-TASSER assembly simulations for automated cryo-EM structure determination. The method is benchmarked on 778 proteins with simulated and experimental density maps, where CR-I-TASSER constructs models with a correct fold (template modeling (TM) score >0.5) for 643 targets that is 64% higher than the best of some other de novo and refinement-based approaches on high-resolution data samples. Detailed data analyses showed that the main advantage of CR-I-TASSER lies in the deep learning-based C alpha position prediction, which significantly improves the threading template quality and therefore boosts the accuracy of final models through optimized fragment assembly simulations. These results demonstrate a new avenue to determine cryo-EM protein structures with high accuracy and robustness covering various target types and density map resolutions. CR-I-TASSER integrates deep neural-network learning with I-TASSER assembly simulations for automated cryo-EM structure determination.
引用
收藏
页码:195 / +
页数:15
相关论文
共 37 条
  • [1] Real-space refinement in PHENIX for cryo-EM and crystallography
    Afonine, Pavel V.
    Poon, Billy K.
    Read, Randy J.
    Sobolev, Oleg V.
    Terwilliger, Thomas C.
    Urzhumtsev, Alexandre
    Adams, Paul D.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2018, 74 : 531 - 544
  • [2] Protein crystallization: from purified protein to diffraction-quality crystal
    Chayen, Naomi E.
    Saridakis, Emmanuel
    [J]. NATURE METHODS, 2008, 5 (02) : 147 - 153
  • [3] MolProbity: all-atom structure validation for macromolecular crystallography
    Chen, Vincent B.
    Arendall, W. Bryan, III
    Headd, Jeffrey J.
    Keedy, Daniel A.
    Immormino, Robert M.
    Kapral, Gary J.
    Murray, Laura W.
    Richardson, Jane S.
    Richardson, David C.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 12 - 21
  • [4] Single-Particle Cryo-EM at Crystallographic Resolution
    Cheng, Yifan
    [J]. CELL, 2015, 161 (03) : 450 - 457
  • [5] Xmipp 3.0: An improved software suite for image processing in electron microscopy
    de la Rosa-Trevin, J. M.
    Oton, J.
    Marabini, R.
    Zaldivar, A.
    Vargas, J.
    Carazo, J. M.
    Sorzano, C. O. S.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2013, 184 (02) : 321 - 328
  • [6] Drenth Jan, 2007, P1, DOI 10.1007/0-387-33746-6_1
  • [7] Frenz B, 2017, NAT METHODS, V14, P797, DOI [10.1038/nmeth.4340, 10.1038/NMETH.4340]
  • [8] How good can cryo-EM become?
    Glaeser, Robert M.
    [J]. NATURE METHODS, 2016, 13 (01) : 28 - 32
  • [9] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [10] 3-DIMENSIONAL MODEL OF PURPLE MEMBRANE OBTAINED BY ELECTRON-MICROSCOPY
    HENDERSON, R
    UNWIN, PNT
    [J]. NATURE, 1975, 257 (5521) : 28 - 32