An Interpolated Galerkin Finite Element Method for the Poisson Equation

被引:0
作者
Tatyana Sorokina
Shangyou Zhang
机构
[1] Towson University,Department of Mathematics
[2] University of Delaware,Department of Mathematical Sciences
来源
Journal of Scientific Computing | 2022年 / 92卷
关键词
Finite element; Interpolated finite element; Triangular grid; Poisson equation; 65N30; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a new approach to construct finite element methods to solve the Poisson equation. The idea is to use the pointwise Laplacian as a degree of freedom followed by interpolating the solution at the degree of freedom by the given right-hand side function in the partial differential equation. The finite element solution is then the Galerkin projection in a smaller vector space. This idea is similar to that of interpolating the boundary condition in the standard finite element method. Our approach results in a smaller system of equations and of a better condition number. The number of unknowns on each element is reduced significantly from (k2+3k+2)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k^2+3k+2)/2$$\end{document} to 3k for the Pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_k$$\end{document} (k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 3$$\end{document}) finite element. We construct bivariate P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_2$$\end{document} conforming and nonconforming, and Pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_k$$\end{document} (k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 3$$\end{document}) conforming interpolated Galerkin finite elements on triangular grids; prove their optimal order of convergence; and confirm our findings by numerical tests.
引用
收藏
相关论文
共 37 条
[1]  
Alfeld P(2016)Linear Differential Operators on Bivariate Spline Spaces and Spline Vector Fields BIT Numer. Math. 56 15-32
[2]  
Sorokina T(2002)Approximation by quadrilateral finite elements Math. Comp. 71 909-922
[3]  
Arnold DN(1970)Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation SIAM J. Numer. Anal. 7 113-124
[4]  
Boffi D(2011)Hexahedral H(div) and H(curl) finite elements ESAIM Math. Model. Numer. Anal. 45 115-143
[5]  
Falk RS(2011)The lowest order differentiable finite element on rectangular grids SIAM Num. Anal. 49 1350-1368
[6]  
Bramble JH(2015)The minimal conforming Math. Comp. 84 563-579
[7]  
Hilbert SR(2016) finite element spaces on Math. Models Methods Appl. Sci. 26 1649-1669
[8]  
Falk RS(2013) rectangular grids Commun. Math. Stat. 1 143-162
[9]  
Gatto P(2014)Finite element approximations of symmetric tensors on simplicial grids in Math. Methods Appl. Sci. 37 937-951
[10]  
Monk P(2009): the lower order case J. Approx. Theory 158 126-142