Conformal immersions of warped products

被引:0
|
作者
Ruy Tojeiro
机构
[1] Universidade Federal de São Carlos,
来源
Geometriae Dedicata | 2007年 / 128卷
关键词
Conformal immersion; Warped product; Conformally flat manifold; 53B25; 53C25; 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a decomposition theorem for conformal immersions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\colon\;M^n\to {\mathbb{R}}^{N}$$\end{document} into Euclidean space of a warped product of Riemannian manifolds \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^n:=M_0\times_\rho\Pi_{i=1}^k M_i$$\end{document} of dimension n ≥ 3 under the assumption that the second fundamental form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \colon TM \times TM\to T^\perp M$$\end{document} of f satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha|_{TM_i\times TM_j}=0$$\end{document} for i ≠ j. It generalizes the corresponding theorem of Nölker for isometric immersions as well as our previous result on conformal immersions of Riemannian products. In particular, we determine all conformal representations of Euclidean space of dimension n ≥ 3 as a warped product of Riemannian manifolds. As a consequence, we classify the conformally flat warped products.
引用
收藏
页码:17 / 31
页数:14
相关论文
共 50 条