On the Solutions of the Generalized Reaction-Diffusion Model for Bacterial Colony

被引:0
作者
A. M. A. El-Sayed
S. Z. Rida
A. A. M. Arafa
机构
[1] Alexandria University,Department of Mathematics, Faculty of Science
[2] South Valley University,Department of Mathematics, Faculty of Science
来源
Acta Applicandae Mathematicae | 2010年 / 110卷
关键词
Reaction diffusion equations; Decomposition method; Bacteria growth; Fractional calculus;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the Adomian’s decomposition method has been developed to yield approximate solution of the reaction-diffusion model of fractional order which describe the evolution of the bacterium Bacillus subtilis, which grows on the surface of thin agar plates. The fractional derivatives are described in the Caputo sense. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the approach is easy to implement and accurate when applied to partial differential equations of fractional order.
引用
收藏
页码:1501 / 1511
页数:10
相关论文
共 38 条
  • [11] Cohen I.(1988)A review of the decomposition method in applied mathematics Math. Anal. Appl. 135 501-38
  • [12] Ben-Jacob E.(1989)Convergence of Adomian’s method Kybernetes 18 31-106
  • [13] Wakita J.(1993)Decomposition methods: a new proof of convergence Math. Comput. Model. 18 103-937
  • [14] Komatsu K.(2002)New numerical study of Adomian method applied to a diffusion model Kybernetes 31 61-494
  • [15] Nakahara A.(2006)Non-perturbative analytical solutions of the space- and time-fractional Burgers equations Chaos, Solitons Fractals 28 930-1255
  • [16] Matsuyama T.(2006)Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method Appl. Math. Comput. 177 488-774
  • [17] Kitsunezaki S.(2007)Numerical comparison of methods for solving linear differential equations of fractional order Chaos, Solitons Fractals 31 1248-56
  • [18] Kawasaki K.(2006)Approximate solutions for boundary value problems of time-fractional wave equation Appl. Math. Comput. 181 767-undefined
  • [19] Mochizuki A.(2000)A new algorithm for calculating Adomian polynomials for nonlinear operators Appl. Math. Comput. 111 53-undefined
  • [20] Matsushita M.(undefined)undefined undefined undefined undefined-undefined