Traveling Wave Solutions for a Class of One-Dimensional Nonlinear Shallow Water Wave Models

被引:57
作者
Chongsheng Cao
Darryl D. Holm
Edriss S. Titi
机构
[1] Los Alamos National Laboratory,Center for Nonlinear Studies, MS B
[2] Imperial College of Science,258
[3] Technology and Medicine,Los Alamos National Laboratory, Los Alamos, NM 87545, USA; Department of Mathematics
[4] University of California,Department of Mathematics and Department of Mechanical and Aerospace Engineering
关键词
Traveling wave solutions; shallow water models;
D O I
10.1023/B:JODY.0000041284.26400.d0
中图分类号
学科分类号
摘要
In this paper we consider a class of one-dimensional nonlinear shallow water wave models that support weak solutions. We construct new traveling wave solutions for these models. Moreover, we show that these new traveling wave solutions are stable.
引用
收藏
页码:167 / 178
页数:11
相关论文
共 63 条
[1]  
Beals R.(1998)Acoustic scattering and the extended Korteweg-de Vries hierarchy Adv.Math 140 190-206
[2]  
Sattinger D.(1993)An integrable shallow water equation with peaked solitons Phys.Rev.Lett. 71 1661-1664
[3]  
Szmigielski J.(1998)The Camassa–Holm equations as a closure model for turbulent channel flow Phys.Rev.Lett. 81 5338-610
[4]  
Camassa R.(1999)A connection between Camassa–Holm equations and turbulent flows in channels and pipes Phys.Fluids 11 2343-4504
[5]  
Holm D.D.(1999)The Camassa–Holm equations and turbulence Physica D 133 49-1907
[6]  
Chen S.Y.(1999)Direct numerical sim-ulations of the Navier–Stokes alpha model Physica D 133 66-35
[7]  
Foias C.(2000)Stability of Peakons Commun.Pure Appl. Math 53 603-263
[8]  
Holm D.D.(2001)An integrable shallow water equation with linear and nonlinear dispersion Phys.Rev.Lett. 87 4501-230
[9]  
Olson E.J.(1997)Probability distribution functions for the random forced Burgers equation Phys.Rev.Lett. 78 1904-641
[10]  
Titi E.(2001)The Navier–Stokes-alpha model of fluid turbulence Physica D 152 505-621