Test the mergers of the primordial black holes by high frequency gravitational-wave detector

被引:0
作者
Xin Li
Li-Li Wang
Jin Li
机构
[1] Chongqing University,Department of Physics
来源
The European Physical Journal C | 2017年 / 77卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The black hole could have a primordial origin if its mass is less than 1M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1M_\odot $$\end{document}. The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document}. It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around 10-7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-7}$$\end{document}. Also, the upper limit of the amplitude ranges from 10-31.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-31.5}$$\end{document} to 10-29.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-29.5}$$\end{document}. The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document} is derived, which ranges from 1 to 102s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^2\,\mathrm {s^{-1}}$$\end{document}. The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document}. Our results indicate that the SGWB in the high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document} is more likely to be detected by the high frequency gravitational-wave detector.
引用
收藏
相关论文
共 50 条
[41]   THE ROCHESTER GRAVITATIONAL-WAVE DETECTOR [J].
BOCKO, MF ;
CROMAR, MW ;
DOUGLASS, DH ;
GRAM, RQ ;
JOHNSON, WW ;
KARIM, M ;
LAM, CC ;
MACALUSO, D ;
MARSDEN, JR ;
MUHLFELDER, B ;
NARICI, L ;
ZUCKER, M .
JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1984, 17 (08) :694-703
[42]   MUNICH GRAVITATIONAL-WAVE DETECTOR [J].
BILLING, H ;
WINKLER, W .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1976, 33 (02) :665-680
[43]   Primordial black holes and gravitational memory [J].
Carr, B ;
Goymer, C .
PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1999, (136) :321-337
[44]   Mergers of maximally charged primordial black holes [J].
Kritos, Konstantinos ;
Silk, Joseph .
PHYSICAL REVIEW D, 2022, 105 (06)
[45]   MERGERS OF CHARGED BLACK HOLES: GRAVITATIONAL-WAVE EVENTS, SHORT GAMMA-RAY BURSTS, AND FAST RADIO BURSTS [J].
Zhang, Bing .
ASTROPHYSICAL JOURNAL LETTERS, 2016, 827 (02)
[46]   On the Final Gravitational Wave Burst from Binary Black Holes Mergers [J].
Rodriguez, J. F. ;
Rueda, J. A. ;
Ruffini, R. .
ASTRONOMY REPORTS, 2018, 62 (12) :940-952
[47]   Gravitational wave driven mergers and coalescence time of supermassive black holes [J].
Khan, Fazeel Mahmood ;
Berczik, Peter ;
Just, Andreas .
ASTRONOMY & ASTROPHYSICS, 2018, 615
[48]   On the Final Gravitational Wave Burst from Binary Black Holes Mergers [J].
J. F. Rodriguez ;
J. A. Rueda ;
R. Ruffini .
Astronomy Reports, 2018, 62 :940-952
[49]   Gravitational wave mergers of accreting binary black holes in AGN discs [J].
Ishibashi, W. ;
Groebner, M. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 529 (02) :883-892
[50]   Low-frequency terrestrial tensor gravitational-wave detector [J].
Paik, Ho Jung ;
Griggs, Cornelius E. ;
Moody, M. Vol ;
Venkateswara, Krishna ;
Lee, Hyung Mok ;
Nielsen, Alex B. ;
Majorana, Ettore ;
Harms, Jan .
CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (07)