Test the mergers of the primordial black holes by high frequency gravitational-wave detector

被引:0
作者
Xin Li
Li-Li Wang
Jin Li
机构
[1] Chongqing University,Department of Physics
来源
The European Physical Journal C | 2017年 / 77卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The black hole could have a primordial origin if its mass is less than 1M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1M_\odot $$\end{document}. The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document}. It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around 10-7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-7}$$\end{document}. Also, the upper limit of the amplitude ranges from 10-31.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-31.5}$$\end{document} to 10-29.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-29.5}$$\end{document}. The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document} is derived, which ranges from 1 to 102s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^2\,\mathrm {s^{-1}}$$\end{document}. The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document}. Our results indicate that the SGWB in the high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document} is more likely to be detected by the high frequency gravitational-wave detector.
引用
收藏
相关论文
共 50 条
[31]   NONLINEAR GRAVITATIONAL-WAVE MEMORY FROM BINARY BLACK HOLE MERGERS [J].
Favata, Marc .
ASTROPHYSICAL JOURNAL LETTERS, 2009, 696 (02) :L159-L162
[32]   Distribution of the gravitational-wave background from supermassive black holes [J].
Sato-Polito, Gabriela ;
Zaldarriaga, Matias .
PHYSICAL REVIEW D, 2025, 111 (02)
[33]   The effect of gravitational-wave recoil on the demography of massive black holes [J].
Madau, P ;
Quataert, E .
ASTROPHYSICAL JOURNAL, 2004, 606 (01) :L17-L20
[34]   Characterization of binary black holes by heterogeneous gravitational-wave networks [J].
Vitale, Salvatore ;
Whittle, Chris .
PHYSICAL REVIEW D, 2018, 98 (02)
[35]   Can we identify primordial black holes? Tidal tests for subsolar-mass gravitational-wave observations [J].
Crescimbeni, Francesco ;
Franciolini, Gabriele ;
Pani, Paolo ;
Riotto, Antonio .
PHYSICAL REVIEW D, 2024, 109 (12)
[36]   Stochastic gravitational-wave background as a tool for investigating multi-channel astrophysical and primordial black-hole mergers [J].
Bavera, Simone S. ;
Franciolini, Gabriele ;
Cusin, Giulia ;
Riotto, Antonio ;
Zevin, Michael ;
Fragos, Tassos .
ASTRONOMY & ASTROPHYSICS, 2022, 660
[37]   Gravitational-Wave Background as a Probe of the Primordial Black-Hole Abundance [J].
Saito, Ryo ;
Yokoyama, Jun'ichi .
PHYSICAL REVIEW LETTERS, 2009, 102 (16)
[38]   Gravitational wave detector sensitivity to eccentric black hole mergers [J].
Bhaumik, Shubhagata ;
Gayathri, V. ;
Bartos, Imre ;
Anglin, Jeremiah ;
Carullo, Gregorio ;
Healy, James ;
Klimenko, Sergey ;
Lange, Jacob ;
Lousto, Carlos ;
Mishra, Tanmaya ;
Szczepanczyk, Marek J. .
PHYSICAL REVIEW D, 2025, 111 (12)
[39]   Impact of eccentricity on the gravitational-wave searches for binary black holes: High mass case [J].
Ramos-Buades, Antoni ;
Tiwari, Shubhanshu ;
Haney, Maria ;
Husa, Sascha .
PHYSICAL REVIEW D, 2020, 102 (04)
[40]   SKYHOOK GRAVITATIONAL-WAVE DETECTOR [J].
BRAGINSKY, VB ;
THORNE, KS .
NATURE, 1985, 316 (6029) :610-612