Test the mergers of the primordial black holes by high frequency gravitational-wave detector

被引:0
作者
Xin Li
Li-Li Wang
Jin Li
机构
[1] Chongqing University,Department of Physics
来源
The European Physical Journal C | 2017年 / 77卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The black hole could have a primordial origin if its mass is less than 1M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1M_\odot $$\end{document}. The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document}. It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around 10-7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-7}$$\end{document}. Also, the upper limit of the amplitude ranges from 10-31.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-31.5}$$\end{document} to 10-29.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-29.5}$$\end{document}. The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document} is derived, which ranges from 1 to 102s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^2\,\mathrm {s^{-1}}$$\end{document}. The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document}. Our results indicate that the SGWB in the high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document} is more likely to be detected by the high frequency gravitational-wave detector.
引用
收藏
相关论文
共 50 条
[21]   Induced gravitational wave background and primordial black holes [J].
Bugaev, Edgar ;
Klimai, Peter .
PHYSICAL REVIEW D, 2010, 81 (02)
[22]   Prospects for probing ultralight primordial black holes using the stochastic gravitational-wave background induced by primordial curvature perturbations [J].
Kapadia, Shasvath J. ;
Pandey, Kanhaiya Lal ;
Suyama, Teruaki ;
Ajith, Parameswaran .
PHYSICAL REVIEW D, 2020, 101 (12)
[23]   Detailed properties of gravitational-wave mergers from flyby perturbations of wide binary black holes in the field [J].
Raveh, Yael ;
Michaely, Erez ;
Perets, Hagai B. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 514 (03) :4246-4258
[24]   Separating Accretion and Mergers in the Cosmic Growth of Black Holes with X-Ray and Gravitational-wave Observations [J].
Pacucci, Fabio ;
Loeb, Abraham .
ASTROPHYSICAL JOURNAL, 2020, 895 (02)
[25]   Black holes: The next generation-repeated mergers in dense star clusters and their gravitational-wave properties [J].
Rodriguez, Carl L. ;
Zevin, Michael ;
Amaro-Seoane, Pau ;
Chatterjee, Sourav ;
Kremer, Kyle ;
Rasio, Frederic A. ;
Ye, Claire S. .
PHYSICAL REVIEW D, 2019, 100 (04)
[26]   Probing primordial black holes at high redshift with future gravitational wave detectors [J].
Marcoccia, Paolo ;
Nardini, Germano ;
Pieroni, Mauro .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 531 (04) :4444-4463
[27]   Constraints on planetary and asteroid-mass primordial black holes from continuous gravitational-wave searches [J].
Miller, Andrew L. ;
Aggarwal, Nancy ;
Clesse, Sebastien ;
De Lillo, Federico .
PHYSICAL REVIEW D, 2022, 105 (06)
[28]   Tuning gravitational-wave detector networks to measure compact binary mergers [J].
Hughes, SA .
PHYSICAL REVIEW D, 2002, 66 (10)
[29]   Hybrid ?-attractors, primordial black holes and gravitational wave backgrounds [J].
Braglia, Matteo ;
Linde, Andrei ;
Kallosh, Renata ;
Finelli, Fabio .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (04)
[30]   Primordial black holes-perspectives in gravitational wave astronomy [J].
Sasaki, Misao ;
Suyama, Teruaki ;
Tanaka, Takahiro ;
Yokoyama, Shuichiro .
CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (06)