Test the mergers of the primordial black holes by high frequency gravitational-wave detector

被引:0
|
作者
Xin Li
Li-Li Wang
Jin Li
机构
[1] Chongqing University,Department of Physics
来源
The European Physical Journal C | 2017年 / 77卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The black hole could have a primordial origin if its mass is less than 1M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1M_\odot $$\end{document}. The mergers of these black hole binaries generate stochastic gravitational-wave background (SGWB). We investigate the SGWB in high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document}. It can be detected by high frequency gravitational-wave detector. Energy density spectrum and amplitude of the SGWB are derived. The upper limit of the energy density spectrum is around 10-7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-7}$$\end{document}. Also, the upper limit of the amplitude ranges from 10-31.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-31.5}$$\end{document} to 10-29.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-29.5}$$\end{document}. The fluctuation of spacetime origin from gravitational wave could give a fluctuation of the background electromagnetic field in a high frequency gravitational-wave detector. The signal photon flux generated by the SGWB in the high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document} is derived, which ranges from 1 to 102s-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^2\,\mathrm {s^{-1}}$$\end{document}. The comparison between the signal photon flux generated by relic gravitational waves (RGWs) and the SGWB is also discussed in this paper. It is shown that the signal photon flux generated by the RGW, which is predicted by the canonical single-field slow-roll inflation models, is sufficiently lower than the one generated by the SGWB in the high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document}. Our results indicate that the SGWB in the high frequency band 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{8}$$\end{document}–1010Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{10}\,\mathrm {Hz}$$\end{document} is more likely to be detected by the high frequency gravitational-wave detector.
引用
收藏
相关论文
共 50 条
  • [1] Test the mergers of the primordial black holes by high frequency gravitational-wave detector
    Li, Xin
    Wang, Li-Li
    Li, Jin
    EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (09):
  • [2] Primordial black holes and their gravitational-wave signatures
    Bagui, Eleni
    Clesse, Sebastien
    De Luca, Valerio
    Ezquiaga, Jose Maria
    Franciolini, Gabriele
    Garcia-Bellido, Juan
    Joana, Cristian
    Jain, Rajeev Kumar
    Kuroyanagi, Sachiko
    Musco, Ilia
    Papanikolaou, Theodoros
    Raccanelli, Alvise
    Renaux-Petel, Sebastien
    Riotto, Antonio
    Morales, Ester Ruiz
    Scalisi, Marco
    Sergijenko, Olga
    Unal, Caner
    Vennin, Vincent
    Wands, David
    LISA Cosmology Working Grp
    LIVING REVIEWS IN RELATIVITY, 2025, 28 (01)
  • [3] Gravitational-Wave Constraints on the Abundance of Primordial Black Holes
    Saito, Ryo
    Yokoyama, Jun'ichi
    PROGRESS OF THEORETICAL PHYSICS, 2010, 123 (05): : 867 - 886
  • [4] Searching for primordial black holes with stochastic gravitational-wave background in the space-based detector frequency band
    Wang, Yi-Fan
    Huang, Qing-Guo
    Li, Tjonnie G. F.
    Liao, Shihong
    PHYSICAL REVIEW D, 2020, 101 (06)
  • [5] Gravitational wave background from mergers of large primordial black holes
    Deng, Heling
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (03):
  • [6] Probing primordial black holes with anisotropies in stochastic gravitational-wave background
    Wang, Sai
    Vardanyan, Valeri
    Kohri, Kazunori
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [7] Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers
    Mandic, Vuk
    Bird, Simeon
    Cholis, Ilias
    PHYSICAL REVIEW LETTERS, 2016, 117 (20)
  • [8] Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures
    Gerosa, Davide
    Fishbach, Maya
    NATURE ASTRONOMY, 2021, 5 (08) : 749 - 760
  • [9] Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures
    Davide Gerosa
    Maya Fishbach
    Nature Astronomy, 2021, 5 : 749 - 760
  • [10] The minimum testable abundance of primordial black holes at future gravitational-wave detectors
    Luca, Valerio De
    Franciolini, Gabriele
    Pani, Paolo
    Riotto, Antonio
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (11):