Zero Temperature Limits for Quotients of Potentials in Countable Markov Shifts

被引:0
作者
Nicolás Pinto
机构
[1] Pontificia Universidad Católica de Chile (UC),Facultad de Matemáticas
来源
Journal of Statistical Physics | / 190卷
关键词
Zero temperature limits; Countable Markov Shifts; Ergodic optimization; Quotients of potentials; Thermodynamic formalism; 37D35; 37A10; 37A35;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we study ergodic optimization for quotients of functions, generalizing the classical setting in which only one function is considered. We study (non-compact) countable Markov shifts and construct a framework which allow us to prove that a sequence of equilibrium measures has an accumulation point which maximizes the integral of the quotients among the (non-compact) space of invariant measures. We provide applications of this theory to study classic ergodic optimization problems for suspension flows defined on countable Markov shifts.
引用
收藏
相关论文
共 26 条
[1]  
Barreira L(2006)Suspension flows over countable Markov Shifts J. Stat. Phys. 124 207-230
[2]  
Iommi G(2013)Phase transitions for suspension flows commun Math. Phys. 320 475-498
[3]  
Iommi G(2015)Recurrence and transience for suspension flows Israel J. Math. 209 547-592
[4]  
Jordan T(2020)Hidden Gibbs measures on shift spaces over countable alphabets Stoch. Dyn. 20 1-41
[5]  
Iommi G(2018)Entropy in the cusp and phase transitions for geodesic flows Isr J. Math. 225 609-659
[6]  
Jordan T(2018)Ergodic optimization in dynamical systems Ergod. Theory Dynam. Syst. 39 2593-2618
[7]  
Todd M(2005)Zero temperature limits of Gibbs-equilibrium states for countable alphabet subshifts of finite type J. Stat. Phys. 119 765-776
[8]  
Iommi G(2021)Symbolic dynamics for non-uniformly hyperbolic systems Ergod. Theory Dyn. Syst. 41 2591-2658
[9]  
Lacalle C(2020)Ergodic optimization for hyperbolic flows and Lorenz attractors Ann. Henri Poincaré 21 3253-3283
[10]  
Yayama Y(1999)Thermodynamic formalism for countable Markov Shifts Ergod. Theory Dinam. Syst. 19 1565-1593