Multivalued meromorphic application suites and current laminar

被引:35
作者
Dinh T.-C. [1 ]
机构
[1] Mathématique - Bât. 425, Université Paris-Sud, UMR 8628
关键词
Courant; laminarité; transformation meéromorphe;
D O I
10.1007/BF02922193
中图分类号
学科分类号
摘要
Let F n: X 1 → X 2 be a sequence of (multivalued) meromorphic maps between compact Kähler manifolds. We study the asymptotic distribution of preimages of points by F n and, for multivalued self-maps of a compact Riemann surface, the asymptotic distribution of repelling fixed points. Let (Z n) be a sequence of holomorphic images of P s in a projective manifold. We prove that the currents, defined by integration on Z n, properly normalized, converge to currents which satisfy some laminarity property. We also show this laminarity property for the Green currents, of suitable bidimensions, associated to a regular polynomial automorphism of C k or an automorphism of a projective manifold. © 2005 Mathematica Josephina, Inc.
引用
收藏
页码:207 / 227
页数:20
相关论文
共 32 条
  • [31] Siu Y.T., Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27, pp. 53-156, (1974)
  • [32] Skoda H., Prolongement des courants positifs, fermés de masse finie, Invent. Math., 66, pp. 361-376, (1982)