The second weight of generalized Reed-Muller codes in most cases

被引:0
作者
Robert Rolland
机构
[1] Institut de Mathématiques de Luminy,
来源
Cryptography and Communications | 2010年 / 2卷
关键词
Finite field; Footprint; Generalized Reed-Muller code; Gröbner basis; Hamming weight; Hypersurface; Second weight; Weight distribution; 11G25; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
The second weight of the Generalized Reed-Muller code of length qn and order d over the finite field with q elements is now known for d < q and d > (n − 1)(q − 1). In this paper, we determine the second weight for the other values of d which are not multiples of q − 1 plus 1. For the special case d = a(q − 1) + 1 we give an estimate.
引用
收藏
页码:19 / 40
页数:21
相关论文
共 11 条
  • [1] Cherdieu J-P(1996)On the number of points of some hypersurfaces in Finite Fields Their Appl. 2 214-224
  • [2] Rolland R(1970)On generalized Reed-Muller codes and their relatives Inf. Control 16 403-442
  • [3] Delsarte P(2008)On the second weight of generalized Reed-Muller codes Designs Codes Cryptogr. 48 323-330
  • [4] Goethals J(2003)On codes from norm-trace curves Finite Fields Their Appl. 9 351-371
  • [5] MacWilliams F(1968)New generalizations of the Reed-Muller codes part I: primitive codes IEEE Trans. Inf. Theory IT-14 189-199
  • [6] Geil O(2007)Second highest number of points of hypersurfaces in Finite Fields Their Appl. 13 444-449
  • [7] Geil O(undefined)undefined undefined undefined undefined-undefined
  • [8] Kasami T(undefined)undefined undefined undefined undefined-undefined
  • [9] Lin S(undefined)undefined undefined undefined undefined-undefined
  • [10] Peterson W(undefined)undefined undefined undefined undefined-undefined