On the Generalized Cartan Matrices Arising from k-th Yau Algebras of Isolated Hypersurface Singularities

被引:0
作者
Naveed Hussain
Stephen S.-T. Yau
Huaiqing Zuo
机构
[1] Huashang College Guangdong University of Finance and Economics,School of Data Sciences
[2] Tsinghua University,Department of Mathematical Sciences
来源
Algebras and Representation Theory | 2021年 / 24卷
关键词
Isolated singularity; Lie algebra; Generalized Cartan matrix; 14B05; 32S05;
D O I
暂无
中图分类号
学科分类号
摘要
Let (V,0) be an isolated hypersurface singularity defined by the holomorphic function f:(ℂn,0)→(ℂ,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f: (\mathbb {C}^{n}, 0)\rightarrow (\mathbb {C}, 0)$\end{document}. The k-th Yau algebra Lk(V ) is defined to be the Lie algebra of derivations of the k-th moduli algebra Ak(V):=On/(f,mkJ(f))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A^{k}(V) := \mathcal {O}_{n}/(f, m^{k}J(f))$\end{document}, where k ≥ 0, m is the maximal ideal of On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}_{n}$\end{document}. I.e., Lk(V ) := Der(Ak(V ),Ak(V )). These new series of derivation Lie algebras are quite subtle invariants since they capture enough information about the complexity of singularities. In this paper we formulate a conjecture for the complete characterization of ADE singularities by using generalized Cartan matrix Ck(V ) associated to k-th Yau algebras Lk(V ), k ≥ 1. In this paper, we provide evidence for the conjecture and give a new complete characterization for ADE singularities. Furthermore, we compute their other various invariants that arising from the 1-st Yau algebra L1(V ).
引用
收藏
页码:1101 / 1124
页数:23
相关论文
共 46 条
[1]  
Benson M(1990)Equivalence between isolated hypersurface singularities Math. Ann. 287 107-134
[2]  
Yau SS-T(1974)Sur les algèbres admettant un tore d’automorphismes donné J. Algebra 30 305-316
[3]  
Bratzlavsky F(1970)Actes congres intern Math. 2 279-284
[4]  
Brieskorn E(2020)The non-existence of negative weight derivations on positive dimensional isolated singularities: generalized Wahl conjecture J. Differential Geom. 115 195-224
[5]  
Chen B(2020)Variation of complex structures and variation of Lie algebras II: new Lie algebras arising from singularities J. Differential Geom. 115 437-473
[6]  
Chen H(1995)Nonexistence of negative weight derivation of moduli algebras of weighted homogeneous singularities J. Algebra 172 243-254
[7]  
Yau SS-T(2019)Non-existence of negative weight derivations on positively graded Artinian algebras Trans. Amer. Math. Soc. 372 2493-2535
[8]  
Zuo H(1979)Fifteen characterizations of rational double points and simple critical points, Enseign Math. 25 131-163
[9]  
Chen B(2006)Lie algebras of simple hypersurface singularities J. Lie Theory 16 621-649
[10]  
Hussain N(1973)Systeme de poids sur une algebre de Lie nilpotente Manuscripta Math. 9 53-90