Recent advances in earthquake seismology using machine learning

被引:0
作者
Hisahiko Kubo
Makoto Naoi
Masayuki Kano
机构
[1] National Research Institute for Earth Science and Disaster Resilience,Department of Earth and Planetary Sciences, Faculty of Science
[2] Hokkaido University,Graduate School of Science
[3] Tohoku University,undefined
来源
Earth, Planets and Space | / 76卷
关键词
Machine learning; Deep learning; Earthquake catalog development; Seismicity analysis; Ground-motion prediction; Geodetic data; Imbalanced data;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 1244 条
  • [1] Abrahamson NA(2019)Probabilistic seismic hazard analysis in California using nonergodic ground-motion models Bull Seismol Soc Am 109 1235-1249
  • [2] Kuehn NM(2022)An adaptable random forest model for the declustering of earthquake catalogs J Geophys Res 127 e2021JB023254-17
  • [3] Walling M(2023)Bayesian seismic tomography based on velocity-space Stein variational gradient descent for physics-informed neural network IEEE Trans Geosci Remote Sens 61 1-680
  • [4] Landwehr N(2008)Neural network based attenuation of strong motion peaks in Europe J Earthquake Eng 12 663-929
  • [5] Aden-Antoniów F(2020)Benchmarking current and emerging approaches to infrasound signal classification Seismol Res Lett 91 921-1195
  • [6] Frank WB(2022)Integration of density-based spatial clustering with noise and continuous wavelet transform for feature extraction from seismic data Pure Appl Geophys 179 1183-1532
  • [7] Seydoux L(2015)Machine-learning methods for earthquake ground motion analysis and simulation J Eng Mech 141 04014147-1005
  • [8] Agata R(1978)Automatic earthquake recognition and timing from single traces Bull Seismol Soc Am 68 1521-28
  • [9] Shiraishi K(2014)NGA-West2 database Earthq Spectra 30 989-60
  • [10] Fujie G(1999)Probabilistic seismic hazard analysis without the ergodic assumption Seismol Res Lett 70 19-486