Die vermutung von obata für dimension 2

被引:0
作者
Matveev V.S. [1 ]
机构
[1] Mathematisches Institut, Universität Freiburg
关键词
53A20; 54H17; 58F07; 53C05; 53C15; 53C22; 53C24; 58F17; 53A15.;
D O I
10.1007/s00013-003-4905-8
中图分类号
学科分类号
摘要
We prove that if a connected Lie group acts on a connected closed Riemannian surface of nonconstant curvature by diffeomorphisms that take (unparametrized) geodesics to geodesics, then it acts by isometries.
引用
收藏
页码:273 / 281
页数:8
相关论文
共 25 条
[1]  
Beltrami E., Resoluzione del problema: Riportari i punti di una superficie sopra un piano in modo che le linee geodetische vengano rappresentante da linee rette, Ann. Mat. 7, 1, pp. 185-204, (1865)
[2]  
Dini U., Sopra un problema ehe si presenta nella theoria generale delle rappresentazioni geografice di una superficie su un'altra, Ann. Mat. 2, 3, pp. 269-293, (1869)
[3]  
Eisenhart L.P., Riemannian Geometry, (1949)
[4]  
Hasegawa I., Yamauchi K., Infinitesimal projective transformations on tangent bundles with lift connections, Sci. Math. Japon. 3, 57, pp. 469-483, (2003)
[5]  
Kiyohara K., Compact liouville surfaces, J. Math. Soc. Japan, 43, pp. 555-591, (1991)
[6]  
Kiyohara K., Two classes of Riemannian manifolds whose geodesic flows are integrable, Mem. Amer. Math. Soc., 619, (1997)
[7]  
Kolokol'tzov V.N., Polynomial Integrals of Geodesic Flows on Compact Surfaces, (1984)
[8]  
Lichnerowicz A., Geometry of Groups of Transformations, (1977)
[9]  
Lie S., Untersuchungen über geodätische Kurven, Math. Ann., 20, (1882)
[10]  
Sophus Lie Gesammelte Abhandlungen, 2, pp. 267-374, (1935)