Hugoniót--Maslov Conditions for Vortex Singular Solutions of the Shallow Water Equations

被引:0
作者
E. S. Semenov
机构
[1] Russian Scientific Center “Kurchatov Institute”,Institute of Natural Science and Ecology
来源
Mathematical Notes | 2002年 / 71卷
关键词
quasilinear hyperbolic equations; vortex type singularity; Hugoniót--Maslov condition; shallow water equations;
D O I
暂无
中图分类号
学科分类号
摘要
For the “phase” of vortex singular solutions of the shallow water equations we justify the Hamilton--Jacobi equation corresponding to the hydrodynamical mode of perturbation propagation. We also obtain the next correction to the Cauchy--Riemann conditions describing how the singular part of the solution affects the smooth background.
引用
收藏
页码:825 / 835
页数:10
相关论文
共 8 条
  • [1] Trev F.(1978)Propagation of singularities and semi-global existence theorems for (pseudo-)differential operators of principal type Ann. Math. 108 569-609
  • [2] Maslov V. P.(1980)Three algebras corresponding to nonsmooth solutions of systems of quasilinear hyperbolic equations Uspekhi Mat. Nauk [Russian Math. Surveys] 35 252-253
  • [3] Dobrokhotov S. Y.(2001)Proof of Maslov's conjecture about the structure of weak-point singular solutions of the shallow water equations Russian J. Math. Phys. 8 25-54
  • [4] Pankrashkin K. V.(1999)Hugoniót-Maslov chains for solitary vortices of the shallow water equations. I Russian J. Math. Phys. 6 137-173
  • [5] Semenov E. S.(1999)Hugoniót-Maslov chains for solitary vortices of the shallow water equations. II Russian J. Math. Phys. 6 282-313
  • [6] Dobrokhotov S. Y.(2000)Integrability effects in truncatedHu goniót-Maslov chains for trajectories of mesoscale vortices on shallow water Teoret. Mat. Fiz. [Theoret. and Math. Phys.] 125 491-518
  • [7] Dobrokhotov S. Y.(undefined)undefined undefined undefined undefined-undefined
  • [8] Dobrokhotov S. Y.(undefined)undefined undefined undefined undefined-undefined