Controllability of Right-Invariant Systems on Solvable Lie Groups

被引:0
|
作者
Yu. L. Sachkov
机构
[1] Program Systems Institute,
关键词
Controllability; right-invariant systems; bilinear systems; Lie groups;
D O I
10.1023/A:1021877708678
中图分类号
学科分类号
摘要
We study controllability of right-invariant control systems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Gamma = A + \mathbb{R}B$$ \end{document} on Lie groups. Necessary and sufficient controllability conditions for Lie groups not coinciding with their derived subgroup are obtained in terms of the root decomposition corresponding to the adjoint operator ad B. As an application, right-invariant systems on metabelian groups and matrix groups, and bilinear systems are considered.
引用
收藏
页码:531 / 564
页数:33
相关论文
共 50 条