Biological interpretation of deep neural network for phenotype prediction based on gene expression

被引:0
作者
Blaise Hanczar
Farida Zehraoui
Tina Issa
Mathieu Arles
机构
[1] Université Paris-Saclay,IBISC, Univ Evry
来源
BMC Bioinformatics | / 21卷
关键词
Deep neural network; Biological interpretation; Phenotype prediction;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 69 条
  • [1] Libb MWNWS(2015)recht: Machine learning applications in genetics and genomics Nat Rev Genetics 16 321-32
  • [2] Daoud M(2019)A survey of neural network-based cancer prediction models from microarray data Artif Intell Med 97 204-214
  • [3] Mayo M(2020)Deep learning approach for microarray cancer data classification CAAI Trans Intell Technol 5 22-131
  • [4] Basavegowda H(2018)Phenotypes prediction from gene expression data with deep multilayer perceptron and unsupervised pre-training Int J Biosci Biochem Bioinform 8 125-19342
  • [5] Dagnew G(2018)A survey of methods for explaining black box models ACM Comput Surv 51 93-229
  • [6] Hanczar B(2017)A deep learning approach for cancer detection and relevant gene identification Pac Symp Biocomput 22 219-15
  • [7] Henriette M(2017)Methods for interpreting and understanding deep neural networks Digital Signal Process 73 1-46
  • [8] Ratovomanana T(2015)On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation PLOS ONE 10 1-214
  • [9] Zehraoui F(2016)Identification of cancer related genes using a comprehensive map of human gene expression PLoS One 11 6-275
  • [10] Guidotti R(2017)Cell matrix adhesions in cancer: the proteins that form the glue Oncotarget 8 48471-774