Transition to Superfluid Turbulence

被引:0
|
作者
V. B. Eltsov
M. Krusius
G. E. Volovik
机构
[1] Helsinki University of Technology,Low Temperature Laboratory
[2] Kapitza Institute of Physical Problems,undefined
[3] Landau Institute for Theoretical Physics,undefined
来源
Journal of Low Temperature Physics | 2006年 / 145卷
关键词
quantized vortex; vortex dynamics; superfluid turbulence; transition to turbulence; mutual friction; instability; 47.37; 67.40; 67.57;
D O I
暂无
中图分类号
学科分类号
摘要
Turbulence in superfluids depends crucially on the dissipative damping in vortex motion. This is observed in the B phase of superfluid 3He where the dynamics of quantized vortices changes radically in character as a function of temperature. An abrupt transition to turbulence is the most peculiar consequence. As distinct from viscous hydrodynamics, this transition to turbulence is not governed by the velocity-dependent Reynolds number, but by a velocity-independent dimensionless parameter 1/q which depends only on the temperature-dependent mutual friction—the dissipation which sets in when vortices move with respect to the normal excitations of the liquid. At large friction and small values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/q \lesssim 1$$\end{document} the dynamics is vortex number conserving, while at low friction and large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/q > rsim 1$$\end{document} vortices are easily destabilized and proliferate in number. A new measuring technique was employed to identify this hydrodynamic transition: the injection of a tight bundle of many small vortex loops in applied vortex-free flow at relatively high velocities. These vortices are ejected from a vortex sheet covering the AB interface when a two-phase sample of 3He-A and 3He-B is set in rotation and the interface becomes unstable at a critical rotation velocity, triggered by the superfluid Kelvin–Helmholtz instability.
引用
收藏
页码:89 / 106
页数:17
相关论文
共 50 条
  • [21] Quantum Turbulence in Coflow of Superfluid He
    Ikawa, S.
    Tsubota, M.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 183 (3-4) : 230 - 237
  • [22] Phenomenology of quantum turbulence in superfluid helium
    Skrbek, Ladislav
    Schmoranzer, David
    Midlik, Simon
    Sreenivasan, Katepalli R.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (16)
  • [23] Quasiclassical and ultraquantum decay of superfluid turbulence
    Baggaley, A. W.
    Barenghi, C. F.
    Sergeev, Y. A.
    PHYSICAL REVIEW B, 2012, 85 (06):
  • [24] Non-equilibrium thermodynamics analysis of rotating counterflow superfluid turbulence
    Sciacca, Michele
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (1-2) : 91 - 99
  • [25] Transition to turbulence in toroidal pipes
    Di Piazza, Ivan
    Ciofalo, Michele
    JOURNAL OF FLUID MECHANICS, 2011, 687 : 72 - 117
  • [26] Numerical simulations of vortex reconnections in superfluid turbulence
    Barenghi, CF
    IUTAM SYMPOSIUM ON REYNOLDS NUMBER SCALING IN TURBULENT FLOW, 2004, 74 : 109 - 116
  • [27] Kelvin waves and the decay of quantum superfluid turbulence
    Kondaurova, Luiza
    L'vov, Victor
    Pomyalov, Anna
    Procaccia, Itamar
    PHYSICAL REVIEW B, 2014, 90 (09):
  • [28] Elementary Vortex Processes in Thermal Superfluid Turbulence
    Demosthenes Kivotides
    S. Louise Wilkin
    Journal of Low Temperature Physics, 2009, 156 : 163 - 181
  • [29] Critical velocity for superfluid turbulence at high temperatures
    Mitani, Akira
    Hanninen, Risto
    Tsubota, Makoto
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 221 - +
  • [30] Elementary Vortex Processes in Thermal Superfluid Turbulence
    Kivotides, Demosthenes
    Wilkin, S. Louise
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2009, 156 (3-6) : 163 - 181