Transition to Superfluid Turbulence

被引:0
|
作者
V. B. Eltsov
M. Krusius
G. E. Volovik
机构
[1] Helsinki University of Technology,Low Temperature Laboratory
[2] Kapitza Institute of Physical Problems,undefined
[3] Landau Institute for Theoretical Physics,undefined
来源
Journal of Low Temperature Physics | 2006年 / 145卷
关键词
quantized vortex; vortex dynamics; superfluid turbulence; transition to turbulence; mutual friction; instability; 47.37; 67.40; 67.57;
D O I
暂无
中图分类号
学科分类号
摘要
Turbulence in superfluids depends crucially on the dissipative damping in vortex motion. This is observed in the B phase of superfluid 3He where the dynamics of quantized vortices changes radically in character as a function of temperature. An abrupt transition to turbulence is the most peculiar consequence. As distinct from viscous hydrodynamics, this transition to turbulence is not governed by the velocity-dependent Reynolds number, but by a velocity-independent dimensionless parameter 1/q which depends only on the temperature-dependent mutual friction—the dissipation which sets in when vortices move with respect to the normal excitations of the liquid. At large friction and small values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/q \lesssim 1$$\end{document} the dynamics is vortex number conserving, while at low friction and large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/q > rsim 1$$\end{document} vortices are easily destabilized and proliferate in number. A new measuring technique was employed to identify this hydrodynamic transition: the injection of a tight bundle of many small vortex loops in applied vortex-free flow at relatively high velocities. These vortices are ejected from a vortex sheet covering the AB interface when a two-phase sample of 3He-A and 3He-B is set in rotation and the interface becomes unstable at a critical rotation velocity, triggered by the superfluid Kelvin–Helmholtz instability.
引用
收藏
页码:89 / 106
页数:17
相关论文
共 50 条
  • [1] Transition to superfluid turbulence
    Eltsov, V. B.
    Krusius, M.
    Volovik, G. E.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2006, 145 (1-4) : 89 - 106
  • [2] Phenomenology of transition to quantum turbulence in flows of superfluid helium
    Skrbek, Ladislav
    Schmoranzer, David
    Sreenivasan, Katepalli R.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (12)
  • [3] Phase diagram of turbulence in superfluid 3He-B
    Finne, AP
    Boldarev, S
    Eltsov, VB
    Krusius, M
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 138 (3-4) : 567 - 576
  • [4] Phase diagram of turbulence in superfluid 3He-B
    A.P. Finne
    S. Boldarev
    V.B. Eltsov
    M. Krusius
    Journal of Low Temperature Physics, 2005, 138 : 567 - 576
  • [5] Background on superfluid turbulence
    Donnelly, RJ
    IUTAM SYMPOSIUM ON REYNOLDS NUMBER SCALING IN TURBULENT FLOW, 2004, 74 : 93 - 100
  • [6] A damping mechanism and length scale for superfluid turbulence
    Kivotides, D
    Samuels, DC
    PHYSICA B, 2000, 284 : 71 - 72
  • [7] Enhancement of Intermittency in Superfluid Turbulence
    Boue, Laurent
    L'vov, Victor
    Pomyalov, Anna
    Procaccia, Itamar
    PHYSICAL REVIEW LETTERS, 2013, 110 (01)
  • [8] Geometry and topology of superfluid turbulence
    Poole, DR
    Scoffield, H
    Barenghi, CF
    Samuels, DC
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2003, 132 (1-2) : 97 - 117
  • [9] Geometry and Topology of Superfluid Turbulence
    D. R. Poole
    H. Scoffield
    C. F. Barenghi
    D. C. Samuels
    Journal of Low Temperature Physics, 2003, 132 : 97 - 117
  • [10] Quantum turbulence in superfluid helium
    Efimov, V. B.
    PHYSICS-USPEKHI, 2023, 66 (01) : 59 - 89