Geometric Algebra in Linear Algebra and Geometry

被引:0
作者
José María Pozo
Garret Sobczyk
机构
[1] Universitat de Barcelona,Departament de Física Fonamental
[2] Universidad de las Américas-Puebla,Departamento de Fisica y Matematicas
来源
Acta Applicandae Mathematica | 2002年 / 71卷
关键词
affine geometry; Clifford algebra; conformal group; Euclidean geometry; geometric algebra; Grassmann algebra; horosphere; Lie algebra; linear algebra; Möbius transformation; non-Euclidean geometry; null cone; projective geometry; spectral decomposition; Schwarzian derivative; twistor;
D O I
暂无
中图分类号
学科分类号
摘要
This article explores the use of geometric algebra in linear and multilinear algebra, and in affine, projective and conformal geometries. Our principal objective is to show how the rich algebraic tools of geometric algebra are fully compatible with and augment the more traditional tools of matrix algebra. The novel concept of an h-twistor makes possible a simple new proof of the striking relationship between conformal transformations in a pseudo-Euclidean space to isometries in a pseudo-Euclidean space of two higher dimensions. The utility of the h-twistor concept, which is a generalization of the idea of a Penrose twistor to a pseudo-Euclidean space of arbitrary signature, is amply demonstrated in a new treatment of the Schwarzian derivative.
引用
收藏
页码:207 / 244
页数:37
相关论文
共 22 条
[1]  
Ablamowicz R.(1985)On the relationship between twistors and Clifford algebras Lett. Math. Phys. 9 149-155
[2]  
Salingaros N.(1985)On the exterior calculus of invariant theory J. Algebra 96 120-160
[3]  
Barnabei M.(1993)Lie groups as spin groups J. Math. Phys. 34 3642-3669
[4]  
Brini A.(1993)Distance geometry and geometric algebra Found. Phys. 23 1357-1374
[5]  
Rota G. C.(1937)Conformal representations of an Proc. Ned. Akad. Wet. (Math.) 40 700-705
[6]  
Doran C.(1991)-dimensional Euclidean space with a nondefinite fundamental form on itself Acta Appl. Math. 23 65-93
[7]  
Hestenes D.(1991)The design of linear algebra and geometry Acta Appl. Math. 23 25-63
[8]  
Sommen F.(1972)Projective geometry with Clifford algebra Phys. Rep. 6C 241-316
[9]  
Van Acker N.(1995)Twistor theory: An approach to quantization of fields and space-time College Math. J. 26 268-280
[10]  
Dress A. W. M.(1996)The hyperbolic number plane Linear Algebra Appl. 241-243 803-810