Uniqueness for Cesàro summable double Walsh series

被引:0
作者
Daniel D.S. [1 ,2 ]
Wade W.R. [2 ]
机构
[1] Presbyterian College Clinton
[2] Mathematics Department, University of Tennessee Knoxville
关键词
Growth Condition; Measure Zero; Tauberian Theorem; Suitable Growth; Walsh Series;
D O I
10.1023/B:ANAM.0000028826.47862.5f
中图分类号
学科分类号
摘要
We prove a Tauberian theorem for Walsh series of two variables, and use it to obtain several results about uniqueness of Cesàro summable double Walsh series. Namely, we show that up to sets of measure zero, Cesàro summability of double Walsh series is the same as convergence of the square dyadic partial sums and, under a suitable growth condition, that uniqueness holds for Cesàro summable double Walsh series. © 2004 Kluwer Academic Publisher/Akadémiai Kiadó.
引用
收藏
页码:33 / 46
页数:13
相关论文
共 7 条
  • [1] Fine N.J., On the Walsh functions, Trans. Amer. Math. Soc., 65, pp. 372-414, (1949)
  • [2] Moricz F., Schipp F., Wade W.R., Cesä summability of double Walsh-Fourier series, Trans. Amer. Math. Soc., 329, pp. 131-140, (1992)
  • [3] Rudin W., Real and Complex Analysis, (1987)
  • [4] Saks S., Theory of the Integral, (1964)
  • [5] Schipp F., Wade W.R., Simon P., Pal J., Walsh Series. An Introduction to Dyadic Harmonic Analysis, (1990)
  • [6] Shaginyan L.A., On definite limits and sets of limit functions of Walsh series, Mat. Sbornik, 95, pp. 263-271, (1974)
  • [7] Wade W.R., Yoneda K., Uniqueness and quasi-measures on the group of integers of a p-series field, Proc. Amer. Math. Soc., 84, pp. 202-206, (1982)