Membrane parallelism for discrete Morse theory applied to digital images

被引:0
作者
Raúl Reina-Molina
Daniel Díaz-Pernil
Pedro Real
Ainhoa Berciano
机构
[1] University of Seville,CATAM Research Group, Department of Applied Mathematics I
[2] University of the Basque Country,Department of Didactic of Mathematics and Experimental Sciences
来源
Applicable Algebra in Engineering, Communication and Computing | 2015年 / 26卷
关键词
Discrete Morse theory; Digital Imagery; Homology groups; Membrane Computing;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a bio-inspired membrane computational framework for constructing discrete Morse complexes for binary digital images. Our approach is based on the discrete Morse theory and we work with cubical complexes. As example, a parallel algorithm for computing homology groups of binary 3D digital images is designed.
引用
收藏
页码:49 / 71
页数:22
相关论文
共 50 条
  • [41] Topology of matching complexes of complete graphs via discrete Morse theory
    Mondal, Anupam
    Mukherjee, Sajal
    Saha, Kuldeep
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2024, 26 (03) : 17 - 40
  • [42] TADD: A Computational Framework for Data Analysis Using Discrete Morse Theory
    Reininghaus, Jan
    Guenther, David
    Hotz, Ingrid
    Prohaska, Steffen
    Hege, Hans-Christian
    MATHEMATICAL SOFTWARE - ICMS 2010, 2010, 6327 : 198 - 208
  • [43] Discrete Morse theory for totally non-negative flag varieties
    Rietsch, Konstanze
    Williams, Lauren
    ADVANCES IN MATHEMATICS, 2010, 223 (06) : 1855 - 1884
  • [44] Efficient computation of 3D Morse–Smale complexes and persistent homology using discrete Morse theory
    David Günther
    Jan Reininghaus
    Hubert Wagner
    Ingrid Hotz
    The Visual Computer, 2012, 28 : 959 - 969
  • [45] Strong Discrete Morse Theory and Simplicial L–S Category: A Discrete Version of the Lusternik–Schnirelmann Theorem
    Desamparados Fernández-Ternero
    Enrique Macías-Virgós
    Nicholas A. Scoville
    José Antonio Vilches
    Discrete & Computational Geometry, 2020, 63 : 607 - 623
  • [46] A combinatorial method to compute explicit homology cycles using Discrete Morse Theory
    Kozlov D.N.
    Journal of Applied and Computational Topology, 2020, 4 (1) : 79 - 100
  • [47] Efficient computation of 3D Morse-Smale complexes and persistent homology using discrete Morse theory
    Guenther, David
    Reininghaus, Jan
    Wagner, Hubert
    Hotz, Ingrid
    VISUAL COMPUTER, 2012, 28 (10) : 959 - 969
  • [48] A New Application of Discrete Morse Theory to Optimizing Safe Motion Planning Paths
    Upadhyay, Aakriti
    Goldfarb, Boris
    Wang, Weifu
    Ekenna, Chinwe
    ALGORITHMIC FOUNDATIONS OF ROBOTICS XV, 2023, 25 : 18 - 35
  • [49] MAGNITUDE HOMOLOGY OF GRAPHS AND DISCRETE MORSE THEORY ON ASAO-IZUMIHARA COMPLEXES
    Tajima, Yu
    Yoshinaga, Masahiko
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2023, 25 (01) : 331 - 343
  • [50] Strong Discrete Morse Theory and Simplicial L-S Category: A Discrete Version of the Lusternik-Schnirelmann Theorem
    Fernandez-Ternero, Desamparados
    Macias-Virgos, Enrique
    Scoville, Nicholas A.
    Vilches, Jose Antonio
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 63 (03) : 607 - 623