Concavity maximum principle for viscosity solutions of singular equations

被引:0
作者
Petri Juutinen
机构
[1] University of Jyväskylä,Department of Mathematics and Statistics
来源
Nonlinear Differential Equations and Applications NoDEA | 2010年 / 17卷
关键词
35B50; 35J60; 26B25; Concavity maximum principle; Viscosity solutions;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a concavity maximum principle for the viscosity solutions of certain fully nonlinear and singular elliptic and parabolic partial differential equations. Our results parallel and extend those obtained by Korevaar and Kennington for classical solutions of quasilinear equations. Applications are given in the case of the singular infinity Laplace operator.
引用
收藏
页码:601 / 618
页数:17
相关论文
共 26 条
  • [1] Alvarez O.(1997)Convex viscosity solutions and state constraints J. Math. Pures Appl. (9) 76 265-288
  • [2] Lasry J.-M.(1976)On extensions of the Brunn–Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation J. Funct. Anal. 22 366-389
  • [3] Lions P.-L.(1982)Convexity properties of solutions to some classical variational problems Commun. Partial Differ. Equ. 7 1337-1379
  • [4] Brascamp H.J.(2001)Optimal Lipschitz extensions and the infinity Laplacian Calc. Var. Partial Differ. Equ. 13 123-139
  • [5] Lieb E.H.(1990)The maximum principle for semicontinuous functions Differ. Integral Equ. 3 1001-1014
  • [6] Caffarelli L.A.(1992)User’s guide to viscosity solutions of second order partial differential equations Bull. Am. Math. Soc. (N.S.) 27 1-67
  • [7] Spruck J.(2007)Principal eigenvalue of a very badly degenerate operator and applications J. Differ. Equ. 236 532-550
  • [8] Crandall M.G.(1999)The ∞-eigenvalue problem Arch. Ration. Mech. Anal. 148 89-105
  • [9] Evans L.C.(1986)A remark on N. Korevaar’s concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem Math. Methods Appl. Sci. 8 93-101
  • [10] Gariepy R.F.(1985)Power concavity and boundary value problems Indiana Univ. Math. J. 34 687-704