A new proof of Ramanujan’s modular equation relating R(q) with R(q5)

被引:0
作者
Chadwick Gugg
机构
[1] University of Illinois at Urbana-Champaign,Department of Mathematics
来源
The Ramanujan Journal | 2009年 / 20卷
关键词
Rogers–Ramanujan continued fraction; Rogers–Ramanujan functions; Modular equation; Ramanujan’s notebooks; Ramanujan’s lost notebook; 11A55; 33D90;
D O I
暂无
中图分类号
学科分类号
摘要
We give a new proof of Ramanujan’s modular identity relating R(q) with R(q5), where R(q) is the famous Rogers–Ramanujan continued fraction. Our formulation is stronger than those of preceding authors; in particular, we give for the first time identities for the expressions appearing in the numerator and the denominator of Ramanujan’s identity. A related identity for R(q) that has partition-theoretic connections is also proved.
引用
收藏
页码:163 / 177
页数:14
相关论文
共 36 条
  • [1] Andrews G.E.(1981)Ramanujan’s “lost” notebook III. The Rogers–Ramanujan continued fraction Adv. Math. 41 186-208
  • [2] Andrews G.E.(2007)MacMahon’s partition analysis XI: Hexagonal plane partitions Acta Arith. 126 281-294
  • [3] Paule P.(1999)The Rogers–Ramanujan continued fraction J. Comput. Appl. Math. 105 9-24
  • [4] Berndt B.C.(2000)Some theorems on the Rogers–Ramanujan continued fraction in Ramanujan’s lost notebook Trans. Am. Math. Soc. 352 2157-2177
  • [5] Chan H.H.(2004)On the divergence of the Rogers–Ramanujan continued fraction on the unit circle Trans. Am. Math. Soc. 356 3325-3347
  • [6] Huang S.-S.(2009)Two modular equations for squares of the Rogers–Ramanujan functions with applications Ramanujan J. 18 183-207
  • [7] Kang S.-Y.(1998)On the expansion of Ramanujan’s continued fraction Ramanujan J. 2 521-527
  • [8] Sohn J.(2000)An identity of Ramanujan, and applications Contemp. Math. 254 229-234
  • [9] Son S.H.(1981)A simple proof of the Ramanujan conjecture for powers of 5 J. Reine Angew. Math. 326 1-17
  • [10] Berndt B.C.(2007)On recent congruence results of Andrews and Paule for broken Bull. Aust. Math. Soc. 75 121-126