Mixed convective bi-component SiO2–Al2O3/H2O hybrid nanofluid flow over a sphere

被引:0
|
作者
A. Sahaya Jenifer
P. Saikrishnan
机构
[1] National Institute of Technology,Department of Mathematics
来源
Journal of Thermal Analysis and Calorimetry | 2023年 / 148卷
关键词
Hybrid nanofluid; Silica; Alumina; Bi-component; Sphere; Mixed convection; Eckert number; 76D10; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of this study is to analyze the mixed convective bi-component hybrid nanofluid flow over a sphere. The equations governing the flow are transformed via dimensionless coordinates using non-similar transformations. The obtained partial differential equations, that are highly nonlinear, are linearized using the quasilinearization technique, and an efficient implicit finite difference method is adopted to solve for the unknown parameters. The consequences of various values of nanoparticle volume fractions, mixed convection parameter and viscous dissipation parameter on essential parameters such as skin friction and heat transfer coefficients are graphically depicted and the results were discussed.  The temperature and heat transfer coefficient values are observed to be higher for the hybrid nanofluid than the base fluid and nanofluids silica/water and alumina/water. Silica–alumina/water hybrid nanofluid depicts the highest heat transfer rate for a higher nanoparticle volume fraction of alumina than that of silica.
引用
收藏
页码:5603 / 5612
页数:9
相关论文
共 50 条