Adjoint Jordan blocks for simple algebraic groups of type Cℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\ell }$$\end{document} in characteristic two

被引:0
作者
Mikko Korhonen [1 ]
机构
[1] Southern University of Science and Technology,SUSTech International Center for Mathematics
关键词
Algebraic groups; Chevalley groups; Unipotent elements; Nilpotent elements; Adjoint representation; 17B45; 20G99;
D O I
10.1007/s40879-023-00718-w
中图分类号
学科分类号
摘要
Let G be a simple algebraic group over an algebraically closed field K with Lie algebra g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {g}}$$\end{document}. For unipotent elements u∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in G$$\end{document} and nilpotent elements e∈g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e \in {\mathfrak {g}}$$\end{document}, the Jordan block sizes of Ad(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Ad}}\hspace{0.55542pt}(u)$$\end{document} and ad(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ad}}\hspace{0.55542pt}(e)$$\end{document} are known in most cases. In the cases that remain, the group G is of classical type in bad characteristic, so charK=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {char}} K = 2$$\end{document} and G is of type Bℓ,Cℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{\ell }, C_{\ell }$$\end{document}, or Dℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\ell }$$\end{document}. In this paper, we consider the case where G is of type Cℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\ell }$$\end{document} and charK=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {char}} K = 2$$\end{document}. As our main result, we determine the Jordan block sizes of Ad(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Ad}}\hspace{0.55542pt}(u)$$\end{document} and ad(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {ad}}\hspace{0.55542pt}(e)$$\end{document} for all unipotent u∈G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u \in G$$\end{document} and nilpotent e∈g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e \in {\mathfrak {g}}$$\end{document}. In the case where G is of adjoint type, we will also describe the Jordan block sizes on [g,g]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[{\mathfrak {g}}, {\mathfrak {g}}]$$\end{document}.
引用
收藏
相关论文
共 31 条
  • [1] Barry MJJ(2011)Decomposing tensor products and exterior and symmetric squares J. Group Theory 14 59-82
  • [2] Chevalley C(1955)Sur certains groupes simples Tohoku Math. J. 7 14-66
  • [3] Dowd MF(1996)On representations of algebraic groups in characteristic two Comm. Algebra 24 2597-2686
  • [4] Sin P(2015)Decomposing modular tensor products: ‘Jordan partitions’, their parts and Israel J. Math. 209 215-233
  • [5] Glasby SP(2006)-parts J. Group Theory 9 659-672
  • [6] Praeger CE(1962)On the decomposition of the exterior square of an indecomposable module of a cyclic Illinois J. Math. 6 607-619
  • [7] Xia B(1979)-group Math. Z. 166 165-181
  • [8] Gow R(2003)The modular representation algebra of a finite group Linear Algebra Appl. 374 255-274
  • [9] Laffey TJ(2009)Nilpotency in classical groups over a field of characteristic Math. J. Okayama Univ. 51 133-148
  • [10] Green JA(2018)Elementary divisors of tensor products and J. Group Theory 21 365-396