Estimation algorithm research for lithium battery SOC in electric vehicles based on adaptive unscented Kalman filter

被引:0
|
作者
Bo Li
Shaoyi Bei
机构
[1] Jiangsu University of Technology,School of Vehicle and Traffic Engineering
来源
Neural Computing and Applications | 2019年 / 31卷
关键词
State of charge; Peukert equation; AUKF; Electric vehicle;
D O I
暂无
中图分类号
学科分类号
摘要
The state of charge (SOC) is a significant part of energy management for electric vehicle power battery, which has important influence on the safe operation of power battery and the judgment of driver’s operation. Because the battery SOC cannot be measured directly, many researchers use various estimation methods to obtain accurate SOC values. But the SOC is affected by the temperature, current, cycle life and other time-varying nonlinear factors, which make difficult to construct prediction model. The key problem of battery SOC estimation is the change rule of battery capacity. The Peukert equation is a good method for calculating the battery capacity. The traditional Peukert equation without considering the influence of temperature, but the differences of temperature lead to changes in the constants n and K of the Peukert equations. In this paper, the Peukert equation based on temperature, current change and cycle life is established to estimate the battery capacity. And the battery model state equation is established for estimation and measurement equations of charge and discharge parameters Ce,Re,Cd,Rd,R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ {C_{\text{e}} ,R_{\text{e}} ,C_{\text{d}} ,R_{\text{d}} ,R_{0} } \right\} $$\end{document} and VOC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{\text{OC}} $$\end{document} by using the ampere-hour method and the second-order RC model. And the dynamic estimation of charge state of battery is realized by AUKF. The results show that the accuracy of the lithium battery SOC estimation algorithm based on the temperature, current and cycle life of the modified Peukert equation is about 8% higher than that of the traditional KF ampere-hour method.
引用
收藏
页码:8171 / 8183
页数:12
相关论文
共 50 条
  • [1] Estimation algorithm research for lithium battery SOC in electric vehicles based on adaptive unscented Kalman filter
    Li, Bo
    Bei, Shaoyi
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (12): : 8171 - 8183
  • [2] Lithium Battery SOC Estimation Based on Improved Unscented Kalman Filter
    Hu, Jieyu
    Wu, Songrong
    Wang, YiYang
    Lu, Fan
    Liu, Dong
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 511 - 515
  • [3] Adaptive Strong Tracking Unscented Kalman Filter Based SOC Estimation for Lithium-ion Battery
    Liu, Miao
    Cui, Naxin
    Liu, Shulin
    Wang, Chunyu
    Zhang, Chenghui
    Gong, Sizhao
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1437 - 1441
  • [4] The lithium battery SOC estimation on square root unscented Kalman filter
    Liu, Qinghe
    Yu, Quanqing
    ENERGY REPORTS, 2022, 8 : 286 - 294
  • [5] Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
    Sun, Fengchun
    Hu, Xiaosong
    Zou, Yuan
    Li, Siguang
    ENERGY, 2011, 36 (05) : 3531 - 3540
  • [6] SOC Estimation with an Adaptive Unscented Kalman Filter Based on Model Parameter Optimization
    Guo, Xiangwei
    Xu, Xiaozhuo
    Geng, Jiahao
    Hua, Xian
    Gao, Yan
    Liu, Zhen
    APPLIED SCIENCES-BASEL, 2019, 9 (19):
  • [7] State of charge estimation of lithium battery based on Dual Adaptive Unscented Kalman Filter
    Zhang, Peng
    Xie, Changjun
    Dong, Shibao
    2018 IEEE INTERNATIONAL POWER ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2018, : 2174 - 2179
  • [8] A Novel State Estimation Approach Based on Adaptive Unscented Kalman Filter for Electric Vehicles
    Li, Jiabo
    Ye, Min
    Jiao, Shengjie
    Meng, Wei
    Xu, Xinxin
    IEEE ACCESS, 2020, 8 (08) : 185629 - 185637
  • [9] Estimation of the State of Charge of Lithium Batteries Based on Adaptive Unscented Kalman Filter Algorithm
    Lv, Jiechao
    Jiang, Baochen
    Wang, Xiaoli
    Liu, Yirong
    Fu, Yucheng
    ELECTRONICS, 2020, 9 (09) : 1 - 22
  • [10] Battery SOC Estimation based on Multi-model Adaptive Kalman Filter
    Wei Kexin
    Chen Qiaoyan
    MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 2211 - +