Bounded Weight Modules Over the Lie Superalgebra of Cartan W-type

被引:0
|
作者
Rencai Lü
Yaohui Xue
机构
[1] Soochow University,Department of Mathematics
来源
Algebras and Representation Theory | 2023年 / 26卷
关键词
Witt superalgebra; Simple module; Weight module; Bounded module; 17B10; 17B65; 17B66;
D O I
暂无
中图分类号
学科分类号
摘要
Let Am,n be the tensor product of the polynomial algebra in m even variables and the exterior algebra in n odd variables over the complex field ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}$\end{document}, and the Witt superalgebra Wm,n be the Lie superalgebra of superderivations of Am,n. In this paper, we classify the non-trivial simple bounded weight Wm,n modules with respect to the standard Cartan subalgebra of Wm,n. Any such module is a simple quotient of a tensor module F(P,L(V1 ⊗ V2)) for a simple weight module P over the Weyl superalgebra Km,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {K}_{m,n}$\end{document}, a finite-dimensional simple glm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak {gl}_{m}$\end{document}-module V1 and a simple bounded gln\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak {gl}_{n}$\end{document}-module V2.
引用
收藏
页码:763 / 781
页数:18
相关论文
共 11 条
  • [1] Bounded Weight Modules Over the Lie Superalgebra of Cartan W-type
    Lu, Rencai
    Xue, Yaohui
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (03) : 763 - 781
  • [2] Classification of infinite dimensional weight modules over the Lie superalgebra sl(2/1)
    Su, YC
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (03) : 1301 - 1309
  • [3] Classification of irreducible bounded weight modules over the derivation Lie algebras of quantum tori
    Liu, Genqiang
    Zhao, Kaiming
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 495 : 11 - 23
  • [4] Simple modules for some Cartan-type Lie superalgebras
    Wei, Zhu
    Zhang, Yongzheng
    Zhang, Qingcheng
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (01): : 129 - 152
  • [5] Bounded weight modules for basic classical Lie superalgebras at infinity
    Grantcharov, Dimitar
    Penkov, Ivan
    Serganova, Vera
    EUROPEAN JOURNAL OF MATHEMATICS, 2024, 10 (01)
  • [6] Weight Modules Over a Class of Graded Lie Algebras
    Xuewen Liu
    Xiangqian Guo
    Algebras and Representation Theory, 2014, 17 : 1235 - 1248
  • [7] Weight Modules Over a Class of Graded Lie Algebras
    Liu, Xuewen
    Guo, Xiangqian
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (04) : 1235 - 1248
  • [8] Bounded weight modules of the Lie algebra of vector fields on C2
    Cavaness, Andrew
    Grantcharov, Dimitar
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (12)
  • [9] A Reduction Theorem for Highest Weight Modules over Toroidal Lie Algebras
    Ivan Dimitrov
    Vyacheslav Futorny
    Ivan Penkov
    Communications in Mathematical Physics, 2004, 250 : 47 - 63
  • [10] Irreducible weight modules over the Schrodinger Lie algebra in (n+1) dimensional space-time
    Liu, Genqiang
    Li, Yang
    Wang, Keke
    JOURNAL OF ALGEBRA, 2021, 575 : 1 - 13