Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction

被引:0
|
作者
Chinmay Belthangady
Loic A. Royer
机构
[1] Chan Zuckerberg Biohub,
来源
Nature Methods | 2019年 / 16卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Deep learning is becoming an increasingly important tool for image reconstruction in fluorescence microscopy. We review state-of-the-art applications such as image restoration and super-resolution imaging, and discuss how the latest deep learning research could be applied to other image reconstruction tasks. Despite its successes, deep learning also poses substantial challenges and has limits. We discuss key questions, including how to obtain training data, whether discovery of unknown structures is possible, and the danger of inferring unsubstantiated image details.
引用
收藏
页码:1215 / 1225
页数:10
相关论文
共 50 条
  • [31] Deep Learning Regularized Acceleration for Photoacoustic Image Reconstruction
    Gong, Jiali
    Lan, Hengrong
    Gao, Feng
    Gao, Fei
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [32] Deep Learning CT Image Reconstruction in Clinical Practice
    Arndt, Clemens
    Guettler, Felix
    Heinrich, Andreas
    Buerckenmeyer, Florian
    Diamantis, Ioannis
    Teichgraeber, Ulf
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2021, 193 (03): : 252 - 261
  • [33] Deep learning VLBI image reconstruction with closure invariants
    Lai, Samuel
    Thyagarajan, Nithyanandan
    Wong, O. Ivy
    Diakogiannis, Foivos
    Hoefs, Lucas
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 536 (01) : 446 - 461
  • [34] Deep Learning Applications in Medical Image Analysis
    Ker, Justin
    Wang, Lipo
    Rao, Jai
    Lim, Tchoyoson
    IEEE ACCESS, 2018, 6 : 9375 - 9389
  • [35] Image reconstruction using priors from deep learning
    Ayyagari, Devi
    Ramesh, Nisha
    Yatsenko, Dimitri
    Tasdizen, Tolga
    Atria, Cristian
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [36] DEEP DICTIONARY-TRANSFORM LEARNING FOR IMAGE RECONSTRUCTION
    Ravishankar, Saiprasad
    Lahiri, Anish
    Blocker, Cameron
    Fessler, Jeffrey A.
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1208 - 1212
  • [37] IMAGE QUALITY AFFECTS DEEP LEARNING RECONSTRUCTION OF MRI
    Jeelani, Haris
    Martin, Jonathan
    Vasquez, Francis
    Salerno, Michael
    Weller, Daniel S.
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 357 - 360
  • [38] Feature aware deep learning CT image reconstruction
    Matsuura, Masakazu
    Zhou, Jian
    Akino, Naruomi
    Yu, Zhou
    15TH INTERNATIONAL MEETING ON FULLY THREE-DIMENSIONAL IMAGE RECONSTRUCTION IN RADIOLOGY AND NUCLEAR MEDICINE, 2019, 11072
  • [39] Deep Generalized Learning Model for PET Image Reconstruction
    Zhang, Qiyang
    Hu, Yingying
    Zhao, Yumo
    Cheng, Jing
    Fan, Wei
    Hu, Debin
    Shi, Fuxiao
    Cao, Shuangliang
    Zhou, Yun
    Yang, Yongfeng
    Liu, Xin
    Zheng, Hairong
    Liang, Dong
    Hu, Zhanli
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (01) : 122 - 134
  • [40] Bayesian Deep Learning for Accelerated MR Image Reconstruction
    Schlemper, Jo
    Castro, Daniel C.
    Bai, Wenjia
    Qin, Chen
    Oktay, Ozan
    Duan, Jinming
    Price, Anthony N.
    Hajnal, Jo
    Rueckert, Daniel
    MACHINE LEARNING FOR MEDICAL IMAGE RECONSTRUCTION, MLMIR 2018, 2018, 11074 : 64 - 71