A Mortar Mixed Finite Volume Method for Elliptic Problems on Non-matching Multi-block Triangular Grids

被引:0
作者
Yanni Gao
Yonghai Li
机构
[1] Jilin University,College of Mathematics
来源
Journal of Scientific Computing | 2017年 / 73卷
关键词
Mixed finite volume method; Error estimate; Multi-block domain; Non-matching grids; Mortar finite element space; 65N08; 65N12; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
A mixed finite volume method is considered for the mixed formulation of second-order elliptic equations. The computational domain can be decomposed into non-overlapping sub-domains or blocks and the diffusion tensors may be discontinuous across the sub-domain boundaries. We define a conforming triangular partition on each sub-domain independently, and employ the standard mixed finite volume method within each sub-domain. A mortar finite element space is introduced to approximate the trace of the pressure on the non-matching interfaces. Moreover, a continuity condition of flux is imposed weakly. We prove the scheme’s first order optimal rate of convergence for both the pressure and the velocity. Numerical experiments are provided to illustrate the error behavior of the scheme and confirm our theoretical results.
引用
收藏
页码:50 / 69
页数:19
相关论文
共 69 条
  • [11] Chou SH(1972), Arch. Ration. Mech. Anal. 46 177-199
  • [12] Kwak DY(2014), Math. Comput. 84 599-628
  • [13] Chou SH(2015) in covolume methods for elliptic and parabolic problem: a unified approach Proced. Comput. Sci. 51 1198-1207
  • [14] Kwak DY(2014)General lagrange and hermite interpolation in Numer. Math. 127 93-165
  • [15] Kim KY(2012) with alpplications to finite element methods SIAM J. Numer. Anal. 50 2379-2399
  • [16] Chou SH(2003)A construction of highter-order finite volume methods Comput. Methods Appl. Math. 3 189-201
  • [17] Kwak DY(2012)An enhanced velocity multipoint flux mixed finite element method for Darcy flow on non-matching hexahedral grids J. Sci. Comput. 52 563-587
  • [18] Kim KY(2003)Mortar multiscale finite element methods for Stokes–Darcy flows Computing 71 247-263
  • [19] Chou SH(2007)Optimal biquadratic finite volume element methods on quadrilateral meshes Computing 81 297-315
  • [20] Kwak DY(2005)Analysis of a new mixed finite volume method Numer. Methods Partial Differ. Equ. 21 8-23