Asymptotic Independence and Additive Functionals

被引:0
作者
Endre Csáki
Antónia Földes
机构
[1] Hungarian Academy of Sciences,Alfréd Rényi Institute of Mathematics
[2] City University of New York,undefined
来源
Journal of Theoretical Probability | 2000年 / 13卷
关键词
asymptotic independence; random walk; additive functionals; invariance principle;
D O I
暂无
中图分类号
学科分类号
摘要
A strong approximation result is proved for the partial sum process of i.i.d. sequence of vectors having dependent components, where the components of the approximating process are independent. This result is applied for additive functionals of random walks in one and two dimensions.
引用
收藏
页码:1123 / 1144
页数:21
相关论文
共 42 条
  • [1] Auer P.(1990)The circle homogeneously covered by random walk on Stat. Prob. Lett. 9 403-407
  • [2] Borodin A. N.(1986)On the character of convergence to Brownian local time II Prob. Th. Rel. Fields 72 251-277
  • [3] Csáki E.(1995)On additive functionals of Markov chains J. Theoret. Prob. 8 905-915
  • [4] Csörgö M.(1989)Brownian local time approximated by a Wiener sheet Ann. Prob. 17 516-537
  • [5] Csáki E.(1992)Strong approximations of additive functionals J. Theoret. Prob. 5 679-706
  • [6] Csörgö M.(1988)On the local time process standardized by the local time at zero Acta Math. Acad. Sci. Hung. 52 175-186
  • [7] Földes A.(1998)A strong invariance principle for the local time difference of a simple symmetric planar random walk Studia Sci. Math. Hung. 34 25-39
  • [8] Révész P.(1998)Functional laws of the iterated logarithm for local times of recurrent random walks on Ann. Inst. H. Poincaré 34 545-563
  • [9] Csáki E.(1996)On additive functionals of diffusion processes Studia Sci. Math. Hung. 31 47-62
  • [10] Csörgö M.(1985)On the stability of the local time of a symmetric random walk Acta Sci. Math. 48 85-96