Generic constructions of Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}-bent functions

被引:0
作者
S. Hodžić
E. Pasalic
S. Gangopadhyay
机构
[1] University of Primorska,Department of Computer Science and Engineering
[2] FAMNIT,undefined
[3] University of Primorska,undefined
[4] FAMNIT & IAM,undefined
[5] Indian Institute of Technology Roorkee,undefined
关键词
Walsh–Hadamard transforms; Boolean functions; Bent functions; Plateaued functions; -bent functions; 06E30; 65T50;
D O I
10.1007/s10623-019-00700-2
中图分类号
学科分类号
摘要
Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}-bent functions, mappings from F2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_2^n$$\end{document} to a subset of Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}, were introduced by Dobbertin and Leander (Des Codes Cryptogr 49:3–22, 2008) as an attempt to capture the origin of standard bent functions and in particular to understand better a recursive construction framework of bent functions. Nevertheless, many questions have been left open in Dobbertin and Leander (2008) such as efficient construction methods of Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}-bent functions of different levels, where these levels specify precisely a subset of Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document} containing both the image values of f and its normalized Fourier coefficients. In this article, using different design techniques, we provide several generic construction methods of Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}-bent functions of arbitrary levels, thereby solving an open problem posed in Dobbertin and Leander (2008). On the other hand, apart from an independent theoretical interest in these objects, our rigor treatment of the so-called gluing technique reveals that this approach is equivalent to a classical concept of concatenation. More precisely, gluing four suitable n-variables Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}-bent functions of level one to obtain an (n+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+2)$$\end{document}-variable bent function directly corresponds to a concatenation of four suitable n-variable Boolean functions. Nevertheless, the recursive framework based on Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}-bent functions remains to be investigated further in this context.
引用
收藏
页码:601 / 623
页数:22
相关论文
共 14 条
  • [1] Canteaut A(2003)Decomposing bent functions IEEE Trans. Inf. Theory 49 2004-2019
  • [2] Charpin P(2001)On cryptographic properties of the cosets of IEEE Trans. Inf. Theory 47 1494-1513
  • [3] Canteaut A(2008)Bent functions embedded into the recursive framework of Des. Codes Cryptogr. 49 3-22
  • [4] Carlet C(2013)-bent functions Des. Codes Cryptogr. 66 243-256
  • [5] Charpin P(1976)A new construction of bent functions based on J. Comb. Theory Ser. A 20 300-305
  • [6] Fontaine C(2011)-bent functions Adv. Math. Commun. 5 609-621
  • [7] Dobbertin H(undefined)On bent functions undefined undefined undefined-undefined
  • [8] Leander G(undefined)On the number of bent functions from iterative constructions: lower bounds and hypotheses undefined undefined undefined-undefined
  • [9] Gangopadhyay S(undefined)undefined undefined undefined undefined-undefined
  • [10] Joshi A(undefined)undefined undefined undefined undefined-undefined