An operator method for telegraph partial differential and difference equations

被引:0
作者
Allaberen Ashyralyev
Mahmut Modanli
机构
[1] Fatih University,Department of Mathematics
[2] Siirt University,Department of Mathematics
来源
Boundary Value Problems | / 2015卷
关键词
telegraph equations; Cauchy problem; Hilbert space; difference schemes; stability;
D O I
暂无
中图分类号
学科分类号
摘要
The Cauchy problem for abstract telegraph equations d2u(t)dt2+αdu(t)dt+Au(t)+βu(t)=f(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\frac{d^{2}u(t)}{dt^{2}}}+\alpha{\frac{du(t)}{dt}}+Au(t)+\beta u(t)= f(t)$\end{document} (0≤t≤T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\leq t\leq T$\end{document}), u(0)=φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u(0)=\varphi$\end{document}, u′(0)=ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u^{\prime}(0)=\psi $\end{document} in a Hilbert space H with the self-adjoint positive definite operator A is studied. Stability estimates for the solution of this problem are established. The first and second order of accuracy difference schemes for the approximate solution of this problem are presented. Stability estimates for the solution of these difference schemes are established. In applications, two mixed problems for telegraph partial differential equations are investigated. The methods are illustrated by numerical examples.
引用
收藏
相关论文
共 50 条
[31]   Stability of Stochastic Partial Differential Equations [J].
Ashyralyev, Allaberen ;
Okur, Ulker .
AXIOMS, 2023, 12 (07)
[32]   An Operator Method for Investigation of the Stability of Time-Dependent Source Identification Telegraph Type Differential Problems [J].
Ashyralyev, Allaberen ;
Al-Hazaimeh, Haitham .
SYMMETRY-BASEL, 2023, 15 (10)
[33]   A linearized compact difference scheme for a class of nonlinear delay partial differential equations [J].
Sun, Zhi-zhong ;
Zhang, Zai-bin .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (03) :742-752
[34]   On the Absolute Stable Difference Scheme for Third Order Delay Partial Differential Equations [J].
Ashyralyev, Allaberen ;
Hincal, Evren ;
Ibrahim, Suleiman .
SYMMETRY-BASEL, 2020, 12 (06)
[35]   The constructive solution of linear systems of partial difference and differential equations with constant coefficients [J].
Oberst, U ;
Pauer, F .
MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2001, 12 (3-4) :253-308
[36]   Analysis of the stability and convergence of a finite difference approximation for stochastic partial differential equations [J].
Namjoo, Mehran ;
Mohebbian, Ali .
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2019, 7 (03) :334-358
[37]   The Constructive Solution of Linear Systems of Partial Difference and Differential Equations with Constant Coefficients [J].
Ulrich Oberst ;
Franz Pauer .
Multidimensional Systems and Signal Processing, 2001, 12 :253-308
[38]   On the Stability of Parabolic Differential and Difference Equations with a Time-Nonlocal Condition [J].
A. Ashyralyev ;
C. Ashyralyyev .
Computational Mathematics and Mathematical Physics, 2022, 62 :962-973
[39]   On the Stability of Parabolic Differential and Difference Equations with a Time-Nonlocal Condition [J].
Ashyralyev, A. ;
Ashyralyyev, C. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (06) :962-973
[40]   A note on the fractional hyperbolic differential and difference equations [J].
Ashyralyev, Allaberen ;
Dal, Fadime ;
Pinar, Zehra .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) :4654-4664