An operator method for telegraph partial differential and difference equations

被引:0
作者
Allaberen Ashyralyev
Mahmut Modanli
机构
[1] Fatih University,Department of Mathematics
[2] Siirt University,Department of Mathematics
来源
Boundary Value Problems | / 2015卷
关键词
telegraph equations; Cauchy problem; Hilbert space; difference schemes; stability;
D O I
暂无
中图分类号
学科分类号
摘要
The Cauchy problem for abstract telegraph equations d2u(t)dt2+αdu(t)dt+Au(t)+βu(t)=f(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\frac{d^{2}u(t)}{dt^{2}}}+\alpha{\frac{du(t)}{dt}}+Au(t)+\beta u(t)= f(t)$\end{document} (0≤t≤T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\leq t\leq T$\end{document}), u(0)=φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u(0)=\varphi$\end{document}, u′(0)=ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u^{\prime}(0)=\psi $\end{document} in a Hilbert space H with the self-adjoint positive definite operator A is studied. Stability estimates for the solution of this problem are established. The first and second order of accuracy difference schemes for the approximate solution of this problem are presented. Stability estimates for the solution of these difference schemes are established. In applications, two mixed problems for telegraph partial differential equations are investigated. The methods are illustrated by numerical examples.
引用
收藏
相关论文
共 50 条
[21]   On Source Identification Problem for Telegraph Differential Equations [J].
Ashyralyev, Allaberen ;
Cekic, Fatma .
DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS, ICDDEA 2015, 2016, 164 :39-50
[22]   Finite Difference Schemes for Stochastic Partial Differential Equations in Sobolev Spaces [J].
Máté Gerencsér ;
István Gyöngy .
Applied Mathematics & Optimization, 2015, 72 :77-100
[23]   Finite Difference Schemes for Stochastic Partial Differential Equations in Sobolev Spaces [J].
Gerencser, Mate ;
Gyoengy, Istvan .
APPLIED MATHEMATICS AND OPTIMIZATION, 2015, 72 (01) :77-100
[24]   On complex singularity analysis for linear partial q-difference-differential equations using nonlinear differential equations [J].
Malek, Stephane .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2013, 19 (01) :69-93
[25]   A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation [J].
Bashier, E. B. M. ;
Patidar, K. C. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (05) :779-794
[26]   On generalized solutions of differential equations with operator coefficients [J].
Chernobai O.B. .
Ukrainian Mathematical Journal, 2006, 58 (5) :808-814
[27]   Convergence Rate of Galerkin Method for a Certain Class of Nonlinear Operator-Differential Equations [J].
Vinogradova, Polina .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (03) :339-365
[28]   A FINITE DIFFERENCE METHOD FOR NONLINEAR PARABOLIC-ELLIPTIC SYSTEMS OF SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS [J].
Malec, Marian ;
Sapa, Lucjan .
OPUSCULA MATHEMATICA, 2007, 27 (02) :259-289
[29]   Projection-difference method for a linear operator-differential equation [J].
P. V. Vinogradova ;
A. G. Zarubin .
Differential Equations, 2007, 43 :1262-1270
[30]   Projection-difference method for a linear operator-differential equation [J].
Vinogradova, P. V. ;
Zarubin, A. G. .
DIFFERENTIAL EQUATIONS, 2007, 43 (09) :1262-1270