Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV-Burgers equation

被引:0
作者
Shou-fu Tian
Hong-qing Zhang
机构
[1] Dalian University of Technology,School of Mathematical Sciences
[2] University of British Columbia,Department of Mathematics
来源
Theoretical and Mathematical Physics | 2012年 / 170卷
关键词
supersymmetric Korteweg-de Vries-Burgers equation; super-Hirota bilinear form; Riemann theta function; super Riemann theta function periodic wave solution; solitary wave solution;
D O I
暂无
中图分类号
学科分类号
摘要
Using a multidimensional super Riemann theta function, we propose two key theorems for explicitly constructing multiperiodic super Riemann theta function periodic wave solutions of supersymmetric equations in the superspace ℝΛN+1,M, which is a lucid and direct generalization of the super-Hirota-Riemann method. Once a supersymmetric equation is written in a bilinear form, its super Riemann theta function periodic wave solutions can be directly obtained by using our two theorems. As an application, we present a supersymmetric Korteweg-de Vries-Burgers equation. We study the limit procedure in detail and rigorously establish the asymptotic behavior of the multiperiodic waves and the relations between periodic wave solutions and soliton solutions. Moreover, we find that in contrast to the purely bosonic case, an interesting phenomenon occurs among the super Riemann theta function periodic waves in the presence of the Grassmann variable. The super Riemann theta function periodic waves are symmetric about the band but collapse along with the band. Furthermore, the results can be extended to the case N > 2; here, we only consider an existence condition for an N-periodic wave solution of a general supersymmetric equation.
引用
收藏
页码:287 / 314
页数:27
相关论文
共 89 条
  • [1] Novikov S. P.(1974)undefined Funct. Anal. Appl. 8 236-246
  • [2] Dubrovin B. A.(1975)undefined Funct. Anal. Appl. 9 215-223
  • [3] Its A. R.(1975)undefined Funct. Anal. Appl. 9 65-66
  • [4] Matveev V. B.(1975)undefined Commun. Pure Appl. Math. 28 141-188
  • [5] Lax P. D.(1975)undefined Invent. Math. 30 217-274
  • [6] McKean H. P.(2005)undefined Commun. Math. Phys. 258 149-177
  • [7] van Moerbeke P.(2003)undefined Commun. Math. Phys. 239 309-341
  • [8] Geronimo J. S.(1997)undefined J. Math. Phys. 38 2535-2346
  • [9] Gesztesy F.(1999)undefined J. Math. Phys. 40 3948-3970
  • [10] Holden H.(1999)undefined J. Phys. A 32 3733-3742