Neutrino propagation in an electron background with an inhomogeneous magnetic field

被引:0
|
作者
José F. Nieves
Sarira Sahu
机构
[1] University of Puerto Rico,Laboratory of Theoretical Physics, Department of Physics
[2] Río Piedras,Instituto de Ciencias Nucleares
[3] Universidad Nacional Autónoma de México,Astrophysical Big Bang Laboratory
[4] RIKEN,undefined
来源
The European Physical Journal C | 2018年 / 78卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the electromagnetic coupling of a neutrino that propagates in a two-stream electron background medium. Specifically, we calculate the electromagnetic vertex function for a medium that consists of a normal electron background plus another electron stream background that is moving with a velocity four-vector vμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v^\mu $$\end{document} relative to the normal background. The results can be used as the basis for studying the neutrino electromagnetic properties and various processes in such a medium. As an application, we calculate the neutrino dispersion relation in the presence of an external magnetic field (B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {B}$$\end{document}), focused in the case in which B is inhomogeneous, keeping only the terms of the lowest order in 1/mW2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/m^2_W$$\end{document} and linear in the B and its gradient. We show that the dispersion relation contains additional anisotropic terms involving the derivatives of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {B}$$\end{document}, such as the gradient of k^·(v×B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{k}}\cdot (\mathbf {v}\times \mathbf {B})$$\end{document}, which involve the stream background velocity, and a term of the form k^·(∇×B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{k}}\cdot (\nabla \times \mathbf {B})$$\end{document} that can be present in the absence of the stream background, in addition to a term of the form k^·v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{k}}\cdot \mathbf {v}$$\end{document} and the well known term k^·B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{k}}\cdot \mathbf {B}$$\end{document} that arises in the constant B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {B}$$\end{document} case. The derivative-dependent terms are even under a CP transformation. As a result, in contrast to the latter two just mentioned, they depend on the sum of the particle and antiparticle densities and therefore can be non-zero in a CP-symmetric medium in which the particle and antiparticle densities are equal.
引用
收藏
相关论文
共 50 条
  • [41] CREATION OF AN ELECTRON-POSITRON PAIR BY NEUTRINO IN A MAGNETIC-FIELD
    BORISOV, AV
    ZHUKOVSKII, VC
    LYSOV, BA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1983, 26 (08): : 30 - 34
  • [42] Neutrino production of electron–positron pairs in a moderately strong magnetic field
    A. V. Kuznetsov
    D. A. Rumyantsev
    V. N. Savin
    Physics of Particles and Nuclei, 2017, 48 : 998 - 999
  • [43] Production of electron-positron pairs by a neutrino propagating in a magnetic field
    Kuznetsov, AV
    Mikheev, NV
    PHYSICS OF ATOMIC NUCLEI, 1997, 60 (11) : 1865 - 1874
  • [44] Stochastic electron acceleration by an electron cyclotron wave propagating in an inhomogeneous magnetic field.
    Shoyama, H
    Tanaka, M
    Higashi, S
    Kawai, Y
    Kono, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (09) : 2860 - 2866
  • [45] Neutrino-electron scattering in a magnetic field with allowance for polarizations of electrons
    Guseinov, V. A.
    Jafarov, I. G.
    Gasimova, R. E.
    PHYSICAL REVIEW D, 2007, 75 (07):
  • [46] DRIFT OF AN ELECTRON-HOLE PLASMA IN AN INHOMOGENEOUS MAGNETIC-FIELD
    DOBROVOLSKII, VN
    PAVLYUK, SP
    ROMANOV, AV
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1982, 16 (06): : 691 - 692
  • [47] Charge and magnetic moment of the neutrino in the background field method and in the linear RξL gauge
    Cabral-Rosetti, LG
    Bernabéu, J
    Vidal, J
    Zepeda, A
    EUROPEAN PHYSICAL JOURNAL C, 2000, 12 (04): : 633 - 642
  • [48] Transport in two-dimensional electron gas in inhomogeneous magnetic field
    Ando, M
    Endo, A
    Katsumoto, S
    Iye, Y
    PHYSICA B, 2000, 284 : 1900 - 1901
  • [49] THE ELECTRON DYNAMICS IN AN ION CHANNEL IN PRESENCE OF AN INHOMOGENEOUS BACKGROWND MAGNETIC FIELD
    Kargaryan, A.
    Sadighzadeh, A.
    2015 42ND IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCES (ICOPS), 2015,
  • [50] DRIFT OF AN ELECTRON-HOLE PLASMA IN AN INHOMOGENEOUS MAGNETIC FIELD.
    DOBROVOL'SKII, V.N.
    SHEVCHENKO STATE UNIV, KIEV
    PAVLYUK, S.P.
    ROMANOV, A.V.
    1982, V 16 (N 6): : 691 - 692