Neutrino propagation in an electron background with an inhomogeneous magnetic field

被引:0
|
作者
José F. Nieves
Sarira Sahu
机构
[1] University of Puerto Rico,Laboratory of Theoretical Physics, Department of Physics
[2] Río Piedras,Instituto de Ciencias Nucleares
[3] Universidad Nacional Autónoma de México,Astrophysical Big Bang Laboratory
[4] RIKEN,undefined
来源
The European Physical Journal C | 2018年 / 78卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the electromagnetic coupling of a neutrino that propagates in a two-stream electron background medium. Specifically, we calculate the electromagnetic vertex function for a medium that consists of a normal electron background plus another electron stream background that is moving with a velocity four-vector vμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v^\mu $$\end{document} relative to the normal background. The results can be used as the basis for studying the neutrino electromagnetic properties and various processes in such a medium. As an application, we calculate the neutrino dispersion relation in the presence of an external magnetic field (B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {B}$$\end{document}), focused in the case in which B is inhomogeneous, keeping only the terms of the lowest order in 1/mW2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/m^2_W$$\end{document} and linear in the B and its gradient. We show that the dispersion relation contains additional anisotropic terms involving the derivatives of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {B}$$\end{document}, such as the gradient of k^·(v×B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{k}}\cdot (\mathbf {v}\times \mathbf {B})$$\end{document}, which involve the stream background velocity, and a term of the form k^·(∇×B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{k}}\cdot (\nabla \times \mathbf {B})$$\end{document} that can be present in the absence of the stream background, in addition to a term of the form k^·v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{k}}\cdot \mathbf {v}$$\end{document} and the well known term k^·B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{k}}\cdot \mathbf {B}$$\end{document} that arises in the constant B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {B}$$\end{document} case. The derivative-dependent terms are even under a CP transformation. As a result, in contrast to the latter two just mentioned, they depend on the sum of the particle and antiparticle densities and therefore can be non-zero in a CP-symmetric medium in which the particle and antiparticle densities are equal.
引用
收藏
相关论文
共 50 条
  • [21] Neutrino-Electron Processes in a Magnetic Field and Their Crossing Symmetry
    Dobrynina, A. A.
    Moraru, N. O.
    Ognev, I. S.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2018, 126 (06) : 753 - 765
  • [22] Asymmetry of the Propagation of Left-Handed Neutrinos in an Inhomogeneous Magnetic Field
    Lobanov, A. E.
    Chukhnova, A., V
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2021, 133 (04) : 515 - 523
  • [23] Propagation of microwave radiation through an inhomogeneous plasma layer in a magnetic field
    Balakirev, B. A.
    Bityurin, V. A.
    Bocharov, A. N.
    Brovkin, V. G.
    Vedenin, P. V.
    Mashek, I. Ch
    Pashchina, A. S.
    Pervov, A. Yu
    Petrovskiy, V. P.
    Ryazanskiy, N. M.
    Shkatov, O. Yu
    XXXII INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER (ELBRUS 2017), 2018, 946
  • [24] Neutrino decoherence in an electron and nucleon background
    Nieves, Jose F.
    Sahu, Sarira
    PHYSICAL REVIEW D, 2020, 102 (05)
  • [25] Plasma influence on the neutrino - electron processes in a strong magnetic field
    Kuznetsov, AV
    Mikheev, NV
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 81 : 302 - 308
  • [26] NEUTRINO PAIR EMISSION BY ELECTRON IN A SUPERSTRONG MAGNETIC-FIELD
    BORISOV, AV
    ZHUKOVSKII, VC
    EMINOV, PA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1978, (03): : 110 - 114
  • [27] Electromagnetic vertex of neutrinos in an electron background and a magnetic field
    Nieves, JF
    PHYSICAL REVIEW D, 2003, 68 (11)
  • [28] NEUTRINO PAIR PRODUCTION WHEN AN ELECTRON IS MOVING IN A MAGNETIC FIELD
    BAIER, VN
    KATKOV, VM
    DOKLADY AKADEMII NAUK SSSR, 1966, 171 (02): : 313 - &
  • [29] Inhomogeneous electron liquid in a homogeneous magnetic field of arbitrary strength
    Holas, A
    March, NH
    PHYSICS AND CHEMISTRY OF LIQUIDS, 2001, 39 (03) : 401 - 404
  • [30] ELECTRON HEATING IN A PLASMA AT CYCLOTRON FREQUENCY IN AN INHOMOGENEOUS MAGNETIC FIELD
    AKULINA, DK
    BYKOV, AP
    GREBENSH.SE
    IVANOV, AV
    NECHAEV, YI
    SBITNIKO.IS
    SHPIGEL, IS
    SOVIET PHYSICS JETP-USSR, 1969, 29 (03): : 391 - &