Optimal evaluation of a Toader-type mean by power mean

被引:0
作者
Ying-Qing Song
Tie-Hong Zhao
Yu-Ming Chu
Xiao-Hui Zhang
机构
[1] Hunan City University,School of Mathematics and Computation Science
[2] Hangzhou Normal University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2015卷
关键词
arithmetic mean; Toader mean; quadratic mean; 33E05; 33C05; 26E60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present the best possible parameters p,q∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p, q\in\mathbb {R}$\end{document} such that the double inequality Mp(a,b)<T[A(a,b),Q(a,b)]<Mq(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{p}(a,b)< T[A(a,b), Q(a,b)]< M_{q}(a,b)$\end{document} holds for all a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a, b>0$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a\neq b$\end{document}, and we get sharp bounds for the complete elliptic integral E(t)=∫0π/2(1−t2sin2θ)1/2dθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{E}(t)=\int _{0}^{\pi/2}(1-t^{2}\sin^{2}\theta)^{1/2}\,d\theta$\end{document} of the second kind on the interval (0,2/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(0, \sqrt{2}/2)$\end{document}, where T(a,b)=2π∫0π/2a2cos2θ+b2sin2θdθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T(a,b)=\frac{2}{\pi }\int _{0}^{\pi/2}\sqrt{a^{2}\cos^{2}\theta+b^{2}\sin^{2}\theta}\,d\theta$\end{document}, A(a,b)=(a+b)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A(a,b)=(a+b)/2$\end{document}, Q(a,b)=(a2+b2)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q(a,b)=\sqrt{(a^{2}+b^{2})/2}$\end{document}, Mr(a,b)=[(ar+br)/2]1/r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{r}(a,b)=[(a^{r}+b^{r})/2]^{1/r}$\end{document} (r≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r\neq0$\end{document}), and M0(a,b)=ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{0}(a,b)=\sqrt {ab}$\end{document} are the Toader, arithmetic, quadratic, and rth power means of a and b, respectively.
引用
收藏
相关论文
共 52 条
[11]  
Burk F(2003)Inequalities for means in two variables Arch. Math. 80 201-215
[12]  
Alzer H(2013)Optimal evaluations of some Seiffert-type means by power mean Appl. Math. Comput. 219 4745-4754
[13]  
Qiu S-L(2011)Sharp generalized Seiffert mean bounds for Toader mean Abstr. Appl. Anal. 2011 223-229
[14]  
Costin I(2012)Inequalities between arithmetic-geometric, Gini, and Toader means Abstr. Appl. Anal. 2012 1-7
[15]  
Toader G(2012)Optimal Lehmer mean bounds for the Toader mean Results Math. 61 693-699
[16]  
Chu Y-M(1997)On two problems concerning means J. Hongzhou Inst. Electron. Eng. 17 289-312
[17]  
Wang M-K(2000)An inequality involving the generalized hypergeometric function and the arc length of an ellipse SIAM J. Math. Anal. 31 161-166
[18]  
Qiu S-L(2004)Monotonicity theorems and inequalities for the complete elliptic integrals J. Comput. Appl. Math. 172 527-531
[19]  
Qiu Y-F(2012)Sharp bounds for Toader mean in terms of contraharmonic mean with applications J. Math. Inequal. 7 41-51
[20]  
Chu Y-M(2014)A double inequality for bounding Toader mean by the centroidal mean Proc. Indian Acad. Sci. Math. Sci. 124 751-757