Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system

被引:0
|
作者
Hong Ling
Xu Zeng
Shunxing Guo
机构
[1] Institute of Medicinal Plant Development,
[2] Chinese Academy of Medical Sciences,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Late embryogenesis abundant (LEA) proteins, a diverse family, accumulate during seed desiccation in the later stages of embryogenesis. LEA proteins are associated with tolerance to abiotic stresses, such as drought, salinity and high or cold temperature. Here, we report the first comprehensive survey of the LEA gene family in Dendrobium officinale, an important and widely grown medicinal orchid in China. Based on phylogenetic relationships with the complete set of Arabidopsis and Oryza LEA proteins, 17 genes encoding D. officinale LEAs (DofLEAs) were identified and their deduced proteins were classified into seven groups. The motif composition of these deduced proteins was correlated with the gene structure found in each LEA group. Our results reveal the DofLEA genes are widely distributed and expressed in tissues. Additionally, 11 genes from different groups were introduced into Escherichia coli to assess the functions of DofLEAs. Expression of 6 and 7 DofLEAs in E. coli improved growth performance compared with the control under salt and heat stress, respectively. Based on qPCR data, all of these genes were up-regulated in various tissues following exposure to salt and heat stresses. Our results suggest that DofLEAs play an important role in responses to abiotic stress.
引用
收藏
相关论文
共 50 条
  • [1] Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system
    Ling, Hong
    Zeng, Xu
    Guo, Shunxing
    SCIENTIFIC REPORTS, 2016, 6
  • [2] Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli
    Gao, Jie
    Lan, Ting
    SCIENTIFIC REPORTS, 2016, 6
  • [3] Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli
    Jie Gao
    Ting Lan
    Scientific Reports, 6
  • [4] Expression, purification, and characterization of an intrinsically disordered Late Embryogenesis Abundant (LEA) protein from Artemia franciscana utilizing Escherichia coli and Nicotiana tabacum
    Karim, Md Fazlul
    Yordanov, Yordan S.
    Menze, Michael A.
    FASEB JOURNAL, 2017, 31
  • [5] Genome-wide identification of and functional insights into the late embryogenesis abundant (LEA) gene family in bread wheat (Triticum aestivum)
    Hao Liu
    Mingyan Xing
    Wenbo Yang
    Xiaoqian Mu
    Xin Wang
    Feng Lu
    Yao Wang
    Linsheng Zhang
    Scientific Reports, 9
  • [6] Genome-wide identification of and functional insights into the late embryogenesis abundant (LEA) gene family in bread wheat (Triticum aestivum)
    Liu, Hao
    Xing, Mingyan
    Yang, Wenbo
    Mu, Xiaoqian
    Wang, Xin
    Lu, Feng
    Wang, Yao
    Zhang, Linsheng
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [7] Identification of Late Embryogenesis Abundant (LEA) Protein Putative Interactors Using Phage Display
    Kushwaha, Rekha
    Lloyd, Taylor D.
    Schaefermeyer, Kim R.
    Kumar, Santosh
    Downie, Allan Bruce
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (06): : 6582 - 6603
  • [8] Genome-wide analysis of the LEA (late embryogenesis abundant) protein gene family in Populus trichocarpa
    Ting Lan
    Jie Gao
    Qing-Yin Zeng
    Tree Genetics & Genomes, 2013, 9 : 253 - 264
  • [9] Genome-wide analysis of the LEA (late embryogenesis abundant) protein gene family in Populus trichocarpa
    Lan, Ting
    Gao, Jie
    Zeng, Qing-Yin
    TREE GENETICS & GENOMES, 2013, 9 (01) : 253 - 264
  • [10] A Short Peptide Designed from Late Embryogenesis Abundant Protein Enhances Acid Tolerance in Escherichia coli
    Metwally, Khaled
    Ikeno, Shinya
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2020, 191 (01) : 164 - 176