Modeling soil collapse by artificial neural networks

被引:3
|
作者
Basma A.A. [1 ]
Kallas N. [1 ]
机构
[1] College of Engineering, University of Sharjah, Sharjah
关键词
Artificial neural network; Collapse; Regression; Unsaturated soils;
D O I
10.1023/B:GEGE.0000025044.72718.db
中图分类号
学科分类号
摘要
The feasibility of using neural networks to model the complex relationship between soil parameters, loading conditions, and the collapse potential is investigated in this paper. A back propagation neural network process was used in this study. The neural network was trained using experimental data. The experimental program involved the assessment of the collapse potential using the one-dimensional oedometer apparatus. To cover the broadest possible scope of data, a total of eight types of soils were selected covering a wide range of gradation. Various conditions of water content, unit weights and applied pressures were imposed on the soils. For each placement condition, three samples were prepared and tested with the measured collapse potential values averaged to obtain a representative data point. This resulted in 414 collapse tests with 138 average test values, which were divided into two groups. Group I, consisting of 82 data points, was used to train the neural networks for a specific paradigm. Training was carried out until the mean sum squared error (MSSE) was minimized. The model consisting of eight hidden nodes and six variables was the most successful. These variables were: soil coefficient of uniformity, initial water content, compaction unit weight, applied pressure at wetting, percent sand and percent clay. Once the neural networks have been deemed fully trained its accuracy in predicting collapse potential was tested using group II of the experimental data. The model was further validated using information available in the literature. The data used in both the testing and validation phases were not included in the training phase. The results proved that neural networks are very efficient in assessing the complex behavior of collapsible soils using minimal processing of data. © 2004 Kluwer Academic Publishers.
引用
收藏
页码:427 / 438
页数:11
相关论文
共 50 条
  • [11] Estimation of soil penetration resistance with standardized moisture using modeling by artificial neural networks
    Honorato Fernandes, Mariele Monique
    Coelho, Anderson Prates
    da Silva, Matheus Flavio
    Bertonha, Rafael Scabello
    de Queiroz, Renata Fernandes
    Angeli Furlani, Carlos Eduardo
    Fernandes, Carolina
    CATENA, 2020, 189
  • [12] Threee-dimensional modeling of spatial soil properties via artificial neural networks
    Itani, OM
    Najjar, YM
    GEOTECHNICAL ASPECTS OF PAVEMENTS 2000: SOILS, GEOLOGY, AND FOUNDATIONS, 2000, (1709): : 50 - 59
  • [13] MODELING AND CONTROL BY ARTIFICIAL NEURAL NETWORKS IN BIOTECHNOLOGY
    KURTANJEK, Z
    COMPUTERS & CHEMICAL ENGINEERING, 1994, 18 : S627 - S631
  • [14] Modeling relational responding with artificial neural networks
    Mendoza, Janelle
    Ghirlanda, Stefano
    BEHAVIOURAL PROCESSES, 2023, 205
  • [15] RELATIVE HUMIDITY MODELING WITH ARTIFICIAL NEURAL NETWORKS
    Kuzugudenli, E.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2018, 16 (04): : 5227 - 5235
  • [16] Modeling flexibility using artificial neural networks
    Förderer K.
    Ahrens M.
    Bao K.
    Mauser I.
    Schmeck H.
    Energy Informatics, 1 (Suppl 1) : 73 - 91
  • [17] Artificial neural networks for modeling chemosensory reception
    Malaka, Rainer
    Ragg, Thomas
    Artificial Neural Networks in Engineering - Proceedings (ANNIE'94), 1994, 4 : 573 - 578
  • [18] Statistical Compact Modeling With Artificial Neural Networks
    Dai, Wu
    Li, Yu
    Rong, Zhao
    Peng, Baokang
    Zhang, Lining
    Wang, Runsheng
    Huang, Ru
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (12) : 5156 - 5160
  • [19] Modeling saltwater upcoming with artificial neural networks
    Coppola, Emery
    Szdarovsky, Ferenc
    McIane, Charles
    Pulton, Mary
    Magelky, Robin
    EFFECTIVE UTILIZATION OF AGRICULTURAL SOIL & WATER RESOURCES AND PROTECTION OF ENVIRONMENT, 2007, : 3 - 8
  • [20] Modeling of eucalyptus productivity with artificial neural networks
    Sampaio de Freitas, Eliane Cristina
    de Paiva, Haroldo Nogueira
    Lima Neves, Julio Cesar
    Marcatti, Gustavo Eduardo
    Leite, Helio Garcia
    INDUSTRIAL CROPS AND PRODUCTS, 2020, 146