Some Optimal Inequalities for Anti-invariant Submanifolds of the Unit Sphere

被引:0
作者
Cheng Xing
Jiabin Yin
机构
[1] Nankai University,School of Mathematical Sciences and LPMC
[2] Guangxi Normal University,School of Mathematics and Statistics
来源
The Journal of Geometric Analysis | 2024年 / 34卷
关键词
Unit sphere; Anti-invariant submanifold; Optimal inequality; Rigidity theorem; Primary 53C24; Secondary 53C25; 53C40; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the rigidity phenomena on the (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+1)$$\end{document}-dimensional anti-invariant submanifolds of the unit sphere of dimension (2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2n+1)$$\end{document} from the intrinsic and extrinsic aspects, respectively. First of all, we establish a basic inequality for such submanifolds relative to the norm of the covariant differentiation of both the second fundamental form h and mean curvature vector field H. Secondly, the lower bound of the norm of H is further derived by means of a general inequality. Finally, in dealing with those minimal anti-invariant submanifolds with η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein induced metrics, we obtain an inequality in terms of the Weyl curvature tensor, squared norm S of h, and scalar curvature. In particular, these inequalities above are optimal in the sense that all the submanifolds attaining the equalities are completely determined.
引用
收藏
相关论文
共 53 条
[21]  
Vrancken L(1966)A basic inequality and new characterization of Whitney spheres in a complex space form Mich. Math. J. 13 459-469
[22]  
Wang X(1982)Contact stationary Legendrian surfaces in J. Differ. Geom. 17 531-582
[23]  
Ejiri N(1969)On the generalized Wintgen inequality for Legendrian submanifolds in Sasakian space forms Tohoku Math. J. 21 501-507
[24]  
Hu Z(1976)On fiberings of almost contact manifolds J. Differ. Geom. 11 59-64
[25]  
Xing C(1977)The fundamental equations of a submersion I. Tohoku Math. J. 29 9-23
[26]  
Hu Z(1976)Structure theorem on Riemannian symmetric space II. J. Korean Math. Soc. 13 1-14
[27]  
Xing C(2022)Sasakian manifolds with constant Proc. Am. Math. Soc. 150 3087-3101
[28]  
Hu Z(1999)-holomorphic sectional curvature Acta Math. Sci. (Engl. Ed.) 19 525-528
[29]  
Yin J(undefined)-totally real submanifolds undefined undefined undefined-undefined
[30]  
Hu Z(undefined)Anti-invariant submanifolds of Sasakian space forms undefined undefined undefined-undefined