Some Optimal Inequalities for Anti-invariant Submanifolds of the Unit Sphere

被引:0
作者
Cheng Xing
Jiabin Yin
机构
[1] Nankai University,School of Mathematical Sciences and LPMC
[2] Guangxi Normal University,School of Mathematics and Statistics
来源
The Journal of Geometric Analysis | 2024年 / 34卷
关键词
Unit sphere; Anti-invariant submanifold; Optimal inequality; Rigidity theorem; Primary 53C24; Secondary 53C25; 53C40; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the rigidity phenomena on the (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+1)$$\end{document}-dimensional anti-invariant submanifolds of the unit sphere of dimension (2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2n+1)$$\end{document} from the intrinsic and extrinsic aspects, respectively. First of all, we establish a basic inequality for such submanifolds relative to the norm of the covariant differentiation of both the second fundamental form h and mean curvature vector field H. Secondly, the lower bound of the norm of H is further derived by means of a general inequality. Finally, in dealing with those minimal anti-invariant submanifolds with η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein induced metrics, we obtain an inequality in terms of the Weyl curvature tensor, squared norm S of h, and scalar curvature. In particular, these inequalities above are optimal in the sense that all the submanifolds attaining the equalities are completely determined.
引用
收藏
相关论文
共 53 条
[1]  
Blair DE(2002)The contact Whitney sphere Note Mat. 20 125-133
[2]  
Carriazo A(2001)Closed conformal vector fields and Lagrangian submanifolds in complex space forms Pac. J. Math. 199 269-302
[3]  
Castro I(1995)Twistor holomorphic Lagrangian surfaces in the complex projective and hyperbolic planes Ann. Glob. Anal. Geom. 13 59-67
[4]  
Montealegre CR(1996)Jacobi’s elliptic functions and Lagrangian immersions Proc. R. Soc. Edinb. Sect. A 126 687-704
[5]  
Urbano F(1996)Lagrangian submanifolds satisfying a basic equality Math. Proc. Camb. Philos. Soc. 120 291-307
[6]  
Castro I(2018)On the isolation phenomena of Einstein manifolds-submanifolds versions Proc. Am. Math. Soc. 146 1731-1740
[7]  
Urbano F(1989)-totally real submanifolds of Math. J. Okayama Univ. 31 227-242
[8]  
Chen B-Y(1990) with nonnegative sectional curvature J. Math. Pures Appl. 69 85-93
[9]  
Chen B-Y(2012)-totally real submanifolds of Sasakian space forms Pac. J. Math. 255 79-115
[10]  
Vrancken L(1982)Lagrangian submanifolds in complex projective space with parallel second fundamental form Proc. Am. Math. Soc. 84 243-246