Mapping sub-field maize yields in Nebraska, USA by combining remote sensing imagery, crop simulation models, and machine learning

被引:0
|
作者
Graham R. Jeffries
Timothy S. Griffin
David H. Fleisher
Elena N. Naumova
Magaly Koch
Brian D. Wardlow
机构
[1] Tufts University,Friedman School of Nutrition Science and Policy
[2] Adaptive Cropping Systems Lab.,Center for Remote Sensing
[3] Boston University,undefined
[4] Center for Advanced Land Mgmt. Info. Tech.,undefined
来源
Precision Agriculture | 2020年 / 21卷
关键词
Remote sensing; Crop simulation; Yield mapping; Machine learning; Yield monitor;
D O I
暂无
中图分类号
学科分类号
摘要
Crop yield maps are valuable for many applications in precision agriculture, but are often inaccessible to growers and researchers wishing to better understand yield determinants and improve site-specific management strategies. A method for mapping sub-field crop yields from remote sensing imagery could increase the availability of crop yield maps. A variation of the scalable crop yield mapping approach (SCYM, Lobell et al. in Remote Sensing of Environment 164:324–333, 2015) was developed and tested for estimating sub-field maize (Zea mays L.) yields at 10–30 m without the use of site-specific input data. The method was validated using harvester yield monitor records for 21 site-years for irrigated and rainfed fields in eastern Nebraska, USA. Prediction error ranged greatly across site-years, with relative RMSE scores of 10.8 to 38.5%, and R2 values of 0.003 to 0.37. Significant proportional bias was detected in the predictions, but could be corrected with a small amount of ground truth data. Crop yield prediction accuracies without calibration were suitable for some precision applications such as mapping relative yields and delineating management zones, but model improvements or calibration datasets are needed for applications requiring absolute yield estimates.
引用
收藏
页码:678 / 694
页数:16
相关论文
共 43 条
  • [11] Machine Learning-Based Lithological Mapping from ASTER Remote-Sensing Imagery
    Bahrami, Hazhir
    Esmaeili, Pouya
    Homayouni, Saeid
    Pour, Amin Beiranvand
    Chokmani, Karem
    Bahroudi, Abbas
    MINERALS, 2024, 14 (02)
  • [12] Early Yield Forecasting of Maize by Combining Remote Sensing Images and Field Data with Logistic Models
    Chang, Hongfang
    Cai, Jiabing
    Zhang, Baozhong
    Wei, Zheng
    Xu, Di
    REMOTE SENSING, 2023, 15 (04)
  • [13] Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods
    Shao, Guomin
    Han, Wenting
    Zhang, Huihui
    Zhang, Liyuan
    Wang, Yi
    Zhang, Yu
    AGRICULTURAL WATER MANAGEMENT, 2023, 276
  • [14] Machine Learning Approach for Estimation of Crop Yield Combining Use of Optical and Microwave Remote Sensing Data
    Zhang J.
    Fang S.
    Liu H.
    Journal of Geo-Information Science, 2021, 23 (06) : 1082 - 1091
  • [15] Remote Sensing of Yields: Application of UAV Imagery-Derived NDVI for Estimating Maize Vigor and Yields in Complex Farming Systems in Sub-Saharan Africa
    Wahab, Ibrahim
    Hall, Ola
    Jirstrom, Magnus
    DRONES, 2018, 2 (03) : 1 - 16
  • [16] Transferability of Machine Learning Models for Crop Classification in Remote Sensing Imagery Using a New Test Methodology: A Study on Phenological, Temporal, and Spatial Influences
    Hoppe, Hauke
    Dietrich, Peter
    Marzahn, Philip
    Weiss, Thomas
    Nitzsche, Christian
    von Lukas, Uwe Freiherr
    Wengerek, Thomas
    Borg, Erik
    REMOTE SENSING, 2024, 16 (09)
  • [17] Crop loss identification at field parcel scale using satellite remote sensing and machine learning
    Hiremath, Santosh
    Wittke, Samantha
    Palosuo, Taru
    Kaivosoja, Jere
    Tao, Fulu
    Proll, Maximilian
    Puttonen, Eetu
    Peltonen-Sainio, Pirjo
    Marttinen, Pekka
    Mamitsuka, Hiroshi
    PLOS ONE, 2021, 16 (12):
  • [18] Mapping of decentralised photovoltaic and solar thermal systems by remote sensing aerial imagery and deep machine learning for statistic generation
    Lindahl, Johan
    Johansson, Robert
    Lingfors, David
    ENERGY AND AI, 2023, 14
  • [19] Use of remote sensing-derived fPAR data in a grapevine simulation model for estimating vine biomass accumulation and yield variability at sub-field level
    Leolini, L.
    Bregaglio, S.
    Ginaldi, F.
    Costafreda-Aumedes, S.
    Di Gennaro, S. F.
    Matese, A.
    Maselli, F.
    Caruso, G.
    Palai, G.
    Bajocco, S.
    Bindi, M.
    Moriondo, M.
    PRECISION AGRICULTURE, 2023, 24 (02) : 705 - 726
  • [20] Use of remote sensing-derived fPAR data in a grapevine simulation model for estimating vine biomass accumulation and yield variability at sub-field level
    L. Leolini
    S. Bregaglio
    F. Ginaldi
    S. Costafreda-Aumedes
    S. F. Di Gennaro
    A. Matese
    F. Maselli
    G. Caruso
    G. Palai
    S. Bajocco
    M. Bindi
    M. Moriondo
    Precision Agriculture, 2023, 24 : 705 - 726