Moduli space of parabolic vector bundles on a curve

被引:0
|
作者
Usha N. Bhosle
Indranil Biswas
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
关键词
Parabolic bundle; Moduli space; Semistability; 14D20; 14F05;
D O I
10.1007/s13366-011-0053-7
中图分类号
学科分类号
摘要
Let X be an irreducible smooth complex projective curve. Faltings gave a cohomological criterion for vector bundles on X to be semistable. Using this criterion he gave a construction of the moduli spaces of vector bundles on X (Faltings in J Alg Geom 2:507–568, 1993). An analogous cohomological criterion for semistable parabolic vector bundles on X is now known. Our aim here is to give a construction of the moduli spaces of parabolic vector bundles using this criterion.
引用
收藏
页码:437 / 449
页数:12
相关论文
共 50 条
  • [21] The moduli space of stable vector bundles over a real algebraic curve
    Indranil Biswas
    Johannes Huisman
    Jacques Hurtubise
    Mathematische Annalen, 2010, 347 : 201 - 233
  • [22] The moduli space of stable vector bundles over a real algebraic curve
    Biswas, Indranil
    Huisman, Johannes
    Hurtubise, Jacques
    MATHEMATISCHE ANNALEN, 2010, 347 (01) : 201 - 233
  • [23] Algebraic cohomology of the moduli space of rank 2 vector bundles on a curve
    Balaji, V
    King, AD
    Newstead, PE
    TOPOLOGY, 1997, 36 (02) : 567 - 577
  • [24] On the cohomology ring of the moduli space of rank 2 vector bundles on a curve
    King, AD
    Newstead, PE
    TOPOLOGY, 1998, 37 (02) : 407 - 418
  • [25] MODULI OF VECTOR BUNDLES ON CURVES WITH PARABOLIC STRUCTURES
    SESHADRI, CS
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (01) : 124 - 126
  • [26] On Automorphisms of Moduli Spaces of Parabolic Vector Bundles
    Araujo, Carolina
    Fassarella, Thiago
    Kaur, Inder
    Massarenti, Alex
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (03) : 2261 - 2283
  • [27] COHOMOLOGY OF THE MODULI OF PARABOLIC VECTOR-BUNDLES
    NITSURE, N
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1986, 95 (01): : 61 - 77
  • [28] A Torelli type theorem for the moduli space of parabolic vector bundles over curves
    Balaji, V
    Biswas, I
    Rollin, SD
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2001, 130 : 269 - 280
  • [29] Moduli spaces of vector bundles on a curve and opers
    Indranil Biswas
    Jacques Hurtubise
    Vladimir Roubtsov
    Proceedings - Mathematical Sciences, 133
  • [30] Moduli spaces of vector bundles on a curve and opers
    Biswas, Indranil
    Hurtubise, Jacques
    Roubtsov, Vladimir
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2023, 133 (01):