On nonlinear parabolic equations with singular lower order term

被引:0
|
作者
Youssef El hadfi
Mounim El ouardy
Aziz Ifzarne
Abdelaaziz Sbai
机构
[1] Sultan Moulay Slimane University,Laboratory LIPIM, National School of Applied Sciences Khouribga
来源
Journal of Elliptic and Parabolic Equations | 2022年 / 8卷
关键词
Singular problem; Nonlinear parabolic equations; Lower order term; 35D30; 35K55; 35K67; 35B45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study existence and regularity results for solution to a nonlinear and singular parabolic problem. The model is ∂u∂t-div((a(x,t)+|u|q)∇u)=fuγinQ,u(x,t)=0onΓ,u(x,0)=u0(x)inΩ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lll} \dfrac{\partial u}{\partial t}-\text{ div }((a(x,t)+|u|^{q})\nabla u)=\frac{f}{u^{\gamma }} &{} \text{ in } &{} Q,\\ u(x,t)=0 &{} \text{ on } &{} \Gamma ,\\ u(x,0)=u_{0}(x) &{} \text{ in } &{} \varOmega , \end{array} \right. \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} is a bounded open subset of RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N},$$\end{document}N≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2,$$\end{document}Q is the cylinder Ω×(0,T),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega \times (0,T),$$\end{document}T>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T>0,$$\end{document}Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} the lateral surface ∂Ω×(0,T),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \varOmega \times (0,T),$$\end{document}q>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>0,$$\end{document}γ>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >0,$$\end{document} and f is non-negative function belonging to some Lebesgue space Lm(Q),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{m}(Q),$$\end{document}m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 1$$\end{document} and u0∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{0}\in L^{\infty }(\varOmega )$$\end{document} such that ∀ω⊂⊂Ω,∃Dω>0:u0≥Dωinω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \forall \; \omega \subset \subset \varOmega ,\; \exists \; D_{\omega }>0: \; u_{0}\ge D_{\omega }\;\; \text{ in }\; \omega . \end{aligned}$$\end{document}
引用
收藏
页码:49 / 75
页数:26
相关论文
共 50 条
  • [41] Holder continuity of singular parabolic equations with variable nonlinearity
    El Bahja, Hamid
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2020, 28 (03): : 51 - 82
  • [42] On the existence of solution for degenerate parabolic equations with singular terms
    Benkirane, Abdelmoujib
    El Haji, Badr
    El Moumni, Mostafa
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2018, 14 (3-4) : 591 - 606
  • [43] Acceleration methods of nonlinear iteration for nonlinear parabolic equations
    Yuan, GW
    Hang, XD
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2006, 24 (03) : 412 - 424
  • [44] A nonlinear parabolic equation with drift term
    Farroni, Fernando
    Moscariello, Gioconda
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 397 - 412
  • [45] Higher regularity of solutions of singular parabolic equations with variable nonlinearity
    Antontsev, S.
    Shmarev, S.
    APPLICABLE ANALYSIS, 2019, 98 (1-2) : 310 - 331
  • [46] Existence results for a non-linear obstacle parabolic semicoercive problems with lower order term
    Sabiki, H.
    Rhoudaf, M.
    Elarabi, R.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (01) : 143 - 170
  • [47] On some parabolic equations involving superlinear singular gradient terms
    Magliocca, Martina
    Oliva, Francescantonio
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 2547 - 2590
  • [48] On some parabolic equations involving superlinear singular gradient terms
    Martina Magliocca
    Francescantonio Oliva
    Journal of Evolution Equations, 2021, 21 : 2547 - 2590
  • [49] EXISTENCE AND REGULARITY RESULTS FOR A SINGULAR PARABOLIC EQUATIONS WITH DEGENERATE COERCIVITY
    El Ouardy, Mounim
    El Hadfi, Youssef
    Ifzarne, Aziz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (01): : 117 - 141
  • [50] Periodic solutions for a class of nonlinear parabolic equations
    Georgiev, Svetlin Georgiev
    APPLICABLE ANALYSIS, 2013, 92 (08) : 1643 - 1654