On nonlinear parabolic equations with singular lower order term

被引:0
|
作者
Youssef El hadfi
Mounim El ouardy
Aziz Ifzarne
Abdelaaziz Sbai
机构
[1] Sultan Moulay Slimane University,Laboratory LIPIM, National School of Applied Sciences Khouribga
来源
Journal of Elliptic and Parabolic Equations | 2022年 / 8卷
关键词
Singular problem; Nonlinear parabolic equations; Lower order term; 35D30; 35K55; 35K67; 35B45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study existence and regularity results for solution to a nonlinear and singular parabolic problem. The model is ∂u∂t-div((a(x,t)+|u|q)∇u)=fuγinQ,u(x,t)=0onΓ,u(x,0)=u0(x)inΩ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lll} \dfrac{\partial u}{\partial t}-\text{ div }((a(x,t)+|u|^{q})\nabla u)=\frac{f}{u^{\gamma }} &{} \text{ in } &{} Q,\\ u(x,t)=0 &{} \text{ on } &{} \Gamma ,\\ u(x,0)=u_{0}(x) &{} \text{ in } &{} \varOmega , \end{array} \right. \end{aligned}$$\end{document}where Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document} is a bounded open subset of RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{N},$$\end{document}N≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2,$$\end{document}Q is the cylinder Ω×(0,T),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega \times (0,T),$$\end{document}T>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T>0,$$\end{document}Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} the lateral surface ∂Ω×(0,T),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \varOmega \times (0,T),$$\end{document}q>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>0,$$\end{document}γ>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >0,$$\end{document} and f is non-negative function belonging to some Lebesgue space Lm(Q),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{m}(Q),$$\end{document}m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 1$$\end{document} and u0∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{0}\in L^{\infty }(\varOmega )$$\end{document} such that ∀ω⊂⊂Ω,∃Dω>0:u0≥Dωinω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \forall \; \omega \subset \subset \varOmega ,\; \exists \; D_{\omega }>0: \; u_{0}\ge D_{\omega }\;\; \text{ in }\; \omega . \end{aligned}$$\end{document}
引用
收藏
页码:49 / 75
页数:26
相关论文
共 50 条
  • [31] On the existence and regularity of solutions to singular parabolic p-Laplacian equations with absorption term
    Mounim El Ouardy
    Youssef El Hadfi
    Abdelaaziz Sbai
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 4119 - 4147
  • [32] Parabolic equations with nonlinear singularities
    Martinez-Aparicio, Pedro J.
    Petitta, Francesco
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (01) : 114 - 131
  • [33] NONLINEAR PARABOLIC EQUATIONS FOR MEASURES
    Manita, O. A.
    Shaposhnikov, S. V.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (01) : 43 - 62
  • [34] Nonlinear parabolic equations with regularized derivatives
    Wang, YG
    Oberguggenberger, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (02) : 644 - 658
  • [35] To the uniqueness problem for nonlinear parabolic equations
    Gajewski, H
    Skrypnik, IV
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 10 (1-2) : 315 - 336
  • [36] Existence of solutions for degenerate parabolic equations with singular terms
    Dall'Aglio, Andrea
    Orsina, Luigi
    Petitta, Francesco
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 131 : 273 - 288
  • [37] Nonlinear parabolic equations with nonstandard growth
    Youssfi, A.
    Azroul, E.
    Lahmi, B.
    APPLICABLE ANALYSIS, 2016, 95 (12) : 2766 - 2778
  • [38] BOUNDED SOLUTIONS OF NONLINEAR PARABOLIC EQUATIONS
    Mavinga, Nsoki
    Nkashama, Mubenga N.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, : 207 - 220
  • [40] Obstacle problem for nonlinear parabolic equations
    Korte, Riikka
    Kuusi, Tuomo
    Siljander, Juhana
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (09) : 3668 - 3680