Persistence in reaction diffusion models with weak allee effect

被引:0
作者
Junping Shi
Ratnasingham Shivaji
机构
[1] College of William and Mary,Department of Mathematics
[2] Harbin Normal University,School of Mathematics
[3] Mississippi State University,Department of Mathematics
来源
Journal of Mathematical Biology | 2006年 / 52卷
关键词
35J65; 35B32; 92D25; 92D40; 35Q80; Population biology; Reaction-diffusion equation; Allee effect; Global Bifurcation;
D O I
暂无
中图分类号
学科分类号
摘要
We study the positive steady state distributions and dynamical behavior of reaction-diffusion equation with weak Allee effect type growth, in which the growth rate per capita is not monotonic as in logistic type, and the habitat is assumed to be a heterogeneous bounded region. The existence of multiple steady states is shown, and the global bifurcation diagrams are obtained. Results are applied to a reaction-diffusion model with type II functional response, and also a model with density-dependent diffusion of animal aggregation.
引用
收藏
页码:807 / 829
页数:22
相关论文
共 37 条
[21]  
Logan undefined(1998)undefined J. Differential Equations 146 121-undefined
[22]  
Ludwig undefined(1999)undefined J. Differential Equations 158 94-undefined
[23]  
Ouyang undefined(2001)undefined Bull. Math. Biol. 63 655-undefined
[24]  
Shi undefined(1957)undefined Ecology 38 107-undefined
[25]  
Ouyang undefined(1971)undefined J. Func. Anal. 7 487-undefined
[26]  
Shi undefined(6)undefined Proc. Roy. Soc. Edinburgh Sect. A 128 1389-undefined
[27]  
Owen undefined(1951)undefined Biometrika 38 196-undefined
[28]  
Philip undefined(1)undefined Jour. Anim. Ecol. 58 75-undefined
[29]  
Rabinowitz undefined(1996)undefined Amer. Naturalist 148 255-undefined
[30]  
Shi undefined(1)undefined Math. Biosci. 171 83-undefined